Librería: Gate City Books, GREENSBORO, NC, Estados Unidos de America
EUR 71,29
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: good. USED book in GOOD condition. Great binding, pages and cover show normal signs of wear from use.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 94,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 92,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 92,77
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 116,00
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 139,13
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 1st edition. 210 pages. 9.00x6.00x0.50 inches. In Stock.
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Mär 2009, 2009
ISBN 10: 3540875565 ISBN 13: 9783540875567
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 90,94
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Deconvolution problems occur in many elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f G = f(x y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is ¿ estimating h rst; this means producing an empirical version h of h and, then, ¿ applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ¿ ularization is required to guarantee that h is contained in the invertibility ¿ domain of the convolution operator. The estimator h has to be chosen with respect to the speci c statistical experiment.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2009
ISBN 10: 3540875565 ISBN 13: 9783540875567
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 90,94
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Deconvolution problems occur in many elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f G = f(x y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is estimating h rst; this means producing an empirical version h of h and, then, applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ularization is required to guarantee that h is contained in the invertibility domain of the convolution operator. The estimator h has to be chosen with respect to the speci c statistical experiment.
Publicado por Springer Berlin Heidelberg Mrz 2009, 2009
ISBN 10: 3540875565 ISBN 13: 9783540875567
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 90,94
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Deconvolution problems occur in many elds of nonparametric statistics, for example, density estimation based on contaminated data, nonparametric - gression with errors-in-variables, image and signal deblurring. During the last two decades, those topics have received more and more attention. As appli- tions of deconvolution procedures concern many real-life problems in eco- metrics, biometrics, medical statistics, image reconstruction, one can realize an increasing number of applied statisticians who are interested in nonpa- metric deconvolution methods; on the other hand, some deep results from Fourier analysis, functional analysis, and probability theory are required to understand the construction of deconvolution techniques and their properties so that deconvolution is also particularly challenging for mathematicians. Thegeneraldeconvolutionprobleminstatisticscanbedescribedasfollows: Our goal is estimating a function f while any empirical access is restricted to some quantity h = f G = f(x y)dG(y), (1. 1) that is, the convolution of f and some probability distribution G. Therefore, f can be estimated from some observations only indirectly. The strategy is estimating h rst; this means producing an empirical version h of h and, then, applying a deconvolution procedure to h to estimate f. In the mathematical context, we have to invert the convolution operator with G where some reg- ularization is required to guarantee that h is contained in the invertibility domain of the convolution operator. The estimator h has to be chosen with respect to the speci c statistical experiment. 216 pp. Englisch.
Publicado por Springer Berlin Heidelberg, 2009
ISBN 10: 3540875565 ISBN 13: 9783540875567
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 77,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Gives a general unifying approach to statistical deconvolution topics with easy to understand proofs and applicationsDeconvolution problems occur in many ?elds of nonparametric statistics, for example, density estimation based on contaminated data, nonp.