Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 13,59
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Very Good.
Librería: BGV Books LLC, Murray, KY, Estados Unidos de America
EUR 166,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Good. Exact ISBN match. Immediate shipping. No funny business.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 202,14
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 216,22
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Best Price, Torrance, CA, Estados Unidos de America
EUR 216,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. SUPER FAST SHIPPING.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 227,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 227,76
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 226,82
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 257,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 257,30
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer London, Springer London Aug 2011, 2011
ISBN 10: 1849961867 ISBN 13: 9781849961868
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 246,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC).The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software.This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described.A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis ¿building blocks¿ that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language.Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved.Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 308,97
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 240.
Publicado por Springer London, Springer London, 2013
ISBN 10: 1447127080 ISBN 13: 9781447127086
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 249,04
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis 'building blocks' that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.
Publicado por Springer London, Springer London, 2011
ISBN 10: 1849961867 ISBN 13: 9781849961868
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 249,24
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis 'building blocks' that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 326,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 326,19
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 335,49
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 237 pages. 9.25x6.25x0.50 inches. In Stock.
Publicado por Springer London Nov 2013, 2013
ISBN 10: 1447127080 ISBN 13: 9781447127086
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 139,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis 'building blocks' that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. 240 pp. Englisch.
Librería: moluna, Greven, Alemania
EUR 206,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Formulates complex problems without becoming weighed down by mathematical detailPresents a modern perspective of Bayesian networks and Markov chain Monte Carlo (MCMC) samplingWritten by expertsBayesian Inference for Probabilis.
Librería: moluna, Greven, Alemania
EUR 206,40
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Formulates complex problems without becoming weighed down by mathematical detailPresents a modern perspective of Bayesian networks and Markov chain Monte Carlo (MCMC) samplingWritten by expertsBayesian Inference for Probabilis.
Publicado por Springer London, Springer London Aug 2011, 2011
ISBN 10: 1849961867 ISBN 13: 9781849961868
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 246,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis 'building blocks' that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. 240 pp. Englisch.
Publicado por Springer London, Springer London Nov 2013, 2013
ISBN 10: 1447127080 ISBN 13: 9781447127086
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 246,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC).The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software.This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described.A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis ¿building blocks¿ that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language.Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved.Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 240 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 326,99
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 240.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 336,85
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 240.