Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook (Springer Series in Reliability Engineering)

0 valoración promedio
( 0 valoraciones por Goodreads )
 
9781447127086: Bayesian Inference for Probabilistic Risk Assessment: A Practitioner's Guidebook (Springer Series in Reliability Engineering)

This book synthesizes significant recent advances in the use of risk analysis in many government agencies and private corporations, providing a Bayesian foundation for framing probabilistic problems and performing inference on these problems.

"Sinopsis" puede pertenecer a otra edición de este libro.

From the Back Cover:

Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis “building blocks” that can be modified, combined, or used as-is to solve a variety of challenging problems.

The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.

Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models.

About the Author:

Dana Kelly and Curtis Smith are both specialists in Bayesian inference for risk and reliability analysis, working at the Idaho National Laboratory, USA. They provide support to the Nuclear Regulatory Commission, NASA, the Joint Research Centre in Pettern, and others. They are the authors of numerous refereed publications in the field.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar nuevo Ver libro

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Añadir al carrito

Los mejores resultados en AbeBooks

1.

Dana Kelly, Curtis Smith
Editorial: Springer London Ltd, United Kingdom (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 10
Impresión bajo demanda
Librería
The Book Depository
(London, Reino Unido)
Valoración
[?]

Descripción Springer London Ltd, United Kingdom, 2013. Paperback. Estado de conservación: New. 2011 ed.. Language: English . Brand New Book ***** Print on Demand *****.Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis building blocks that can be modified, combined, or used as-is to solve a variety of challenging problems. The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking. Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. Nº de ref. de la librería AAV9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 134,33
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

2.

Kelly, Dana
Editorial: Springer (2016)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 1
Impresión bajo demanda
Librería
Ria Christie Collections
(Uxbridge, Reino Unido)
Valoración
[?]

Descripción Springer, 2016. Paperback. Estado de conservación: New. PRINT ON DEMAND Book; New; Publication Year 2016; Not Signed; Fast Shipping from the UK. No. book. Nº de ref. de la librería ria9781447127086_lsuk

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 134,35
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 4,24
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

3.

Dana Kelly, Curtis Smith
Editorial: Springer London Ltd, United Kingdom (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 10
Impresión bajo demanda
Librería
The Book Depository US
(London, Reino Unido)
Valoración
[?]

Descripción Springer London Ltd, United Kingdom, 2013. Paperback. Estado de conservación: New. 2011 ed.. Language: English . Brand New Book ***** Print on Demand *****. Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis building blocks that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. Nº de ref. de la librería AAV9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 142,64
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

4.

Dana Kelly, Curtis Smith
Editorial: Springer London Ltd, United Kingdom (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 10
Librería
Book Depository hard to find
(London, Reino Unido)
Valoración
[?]

Descripción Springer London Ltd, United Kingdom, 2013. Paperback. Estado de conservación: New. 2011 ed.. Language: English . This book usually ship within 10-15 business days and we will endeavor to dispatch orders quicker than this where possible. Brand New Book. Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis building blocks that can be modified, combined, or used as-is to solve a variety of challenging problems.The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking.Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. Nº de ref. de la librería LIE9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 143,42
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

5.

Dana Kelly
Editorial: Springer London Ltd (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Cantidad: > 20
Impresión bajo demanda
Librería
Pbshop
(Wood Dale, IL, Estados Unidos de America)
Valoración
[?]

Descripción Springer London Ltd, 2013. PAP. Estado de conservación: New. New Book.Shipped from US within 10 to 14 business days.THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Nº de ref. de la librería IP-9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 140,81
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,39
A Estados Unidos de America
Destinos, gastos y plazos de envío

6.

Dana Kelly
Editorial: Springer London Ltd (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Cantidad: > 20
Impresión bajo demanda
Librería
Books2Anywhere
(Fairford, GLOS, Reino Unido)
Valoración
[?]

Descripción Springer London Ltd, 2013. PAP. Estado de conservación: New. New Book. Delivered from our US warehouse in 10 to 14 business days. THIS BOOK IS PRINTED ON DEMAND.Established seller since 2000. Nº de ref. de la librería IP-9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 139,41
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 9,85
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

7.

DANA KELLY
Editorial: Springer (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 1
Librería
Herb Tandree Philosophy Books
(Stroud, GLOS, Reino Unido)
Valoración
[?]

Descripción Springer, 2013. Paperback. Estado de conservación: NEW. 9781447127086 This listing is a new book, a title currently in-print which we order directly and immediately from the publisher. Nº de ref. de la librería HTANDREE0406407

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 143,23
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 8,76
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

8.

Dana Kelly; Curtis Smith
Editorial: Springer (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Tapa blanda Cantidad: 15
Impresión bajo demanda
Librería
Valoración
[?]

Descripción Springer, 2013. Estado de conservación: New. This item is printed on demand for shipment within 3 working days. Nº de ref. de la librería LP9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 170,26
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 2,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

9.

Curtis Smith
Editorial: Springer
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 20
Librería
BuySomeBooks
(Las Vegas, NV, Estados Unidos de America)
Valoración
[?]

Descripción Springer. Paperback. Estado de conservación: New. Paperback. 228 pages. Dimensions: 9.0in. x 6.1in. x 0.7in.Bayesian Inference for Probabilistic Risk Assessment provides a Bayesian foundation for framing probabilistic problems and performing inference on these problems. Inference in the book employs a modern computational approach known as Markov chain Monte Carlo (MCMC). The MCMC approach may be implemented using custom-written routines or existing general purpose commercial or open-source software. This book uses an open-source program called OpenBUGS (commonly referred to as WinBUGS) to solve the inference problems that are described. A powerful feature of OpenBUGS is its automatic selection of an appropriate MCMC sampling scheme for a given problem. The authors provide analysis building blocks that can be modified, combined, or used as-is to solve a variety of challenging problems. The MCMC approach used is implemented via textual scripts similar to a macro-type programming language. Accompanying most scripts is a graphical Bayesian network illustrating the elements of the script and the overall inference problem being solved. Bayesian Inference for Probabilistic Risk Assessment also covers the important topics of MCMC convergence and Bayesian model checking. Bayesian Inference for Probabilistic Risk Assessment is aimed at scientists and engineers who perform or review risk analyses. It provides an analytical structure for combining data and information from various sources to generate estimates of the parameters of uncertainty distributions used in risk and reliability models. This item ships from multiple locations. Your book may arrive from Roseburg,OR, La Vergne,TN. Paperback. Nº de ref. de la librería 9781447127086

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 174,48
Convertir moneda

Añadir al carrito

Gastos de envío: EUR 3,36
A Estados Unidos de America
Destinos, gastos y plazos de envío

10.

Dana Kelly; Curtis Smith
Editorial: Springer (2013)
ISBN 10: 1447127080 ISBN 13: 9781447127086
Nuevos Paperback Cantidad: 1
Librería
Irish Booksellers
(Rumford, ME, Estados Unidos de America)
Valoración
[?]

Descripción Springer, 2013. Paperback. Estado de conservación: New. book. Nº de ref. de la librería M1447127080

Más información sobre esta librería | Hacer una pregunta a la librería

Comprar nuevo
EUR 186,22
Convertir moneda

Añadir al carrito

Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Existen otras copia(s) de este libro

Ver todos los resultados de su búsqueda