Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 64,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 52 pages. 8.66x5.91x0.12 inches. In Stock.
Publicado por LAP Lambert Academic Publishing Mai 2016, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 35,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Feature selection is the first task of any learning approach to define a relevant set of features. Several methods are proposed to deal with the problem of feature selection including filter, wrapper and embedded methods. In this work, we focus on feature subset selection to select a minimally sized subset of optimal features. Feature Selection is optimization problem; genetic algorithm based attribute subset selection using naïve bayes classifier is used for this purpose. GABASS are found to be the best technique for selection purpose when there is very large population. The GABASS provides good results and their power lies in the good adaptation to the various and fast changing environments.Books on Demand GmbH, Überseering 33, 22297 Hamburg 52 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 133,47
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. New. book.
Publicado por LAP Lambert Academic Publishing Mai 2016, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 35,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Feature selection is the first task of any learning approach to define a relevant set of features. Several methods are proposed to deal with the problem of feature selection including filter, wrapper and embedded methods. In this work, we focus on feature subset selection to select a minimally sized subset of optimal features. Feature Selection is optimization problem; genetic algorithm based attribute subset selection using naïve bayes classifier is used for this purpose. GABASS are found to be the best technique for selection purpose when there is very large population. The GABASS provides good results and their power lies in the good adaptation to the various and fast changing environments. 52 pp. Englisch.
Publicado por LAP LAMBERT Academic Publishing, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 31,27
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar BhupendraDR Somesh Kumar presently spearheads the IT department in NIET, Gr. Noida, India. He has completed his MCA in 2000, ME (CS&E) in 2006, PhD (CS) in 2011. Since 2000, he has been in teaching profession. Prof Bhupendra Ku.
Publicado por LAP Lambert Academic Publishing, 2016
ISBN 10: 365987163X ISBN 13: 9783659871634
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 35,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Feature selection is the first task of any learning approach to define a relevant set of features. Several methods are proposed to deal with the problem of feature selection including filter, wrapper and embedded methods. In this work, we focus on feature subset selection to select a minimally sized subset of optimal features. Feature Selection is optimization problem; genetic algorithm based attribute subset selection using naïve bayes classifier is used for this purpose. GABASS are found to be the best technique for selection purpose when there is very large population. The GABASS provides good results and their power lies in the good adaptation to the various and fast changing environments.