Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Labyrinth Books, Princeton, NJ, Estados Unidos de America
EUR 36,95
Convertir monedaCantidad disponible: 8 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: PBShop.store US, Wood Dale, IL, Estados Unidos de America
EUR 79,46
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, Princeton, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Daedalus Books, Portland, OR, Estados Unidos de America
Miembro de asociación: CBA
Original o primera edición
EUR 40,13
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Near Fine. First Edition. A nice, solid copy. ; Annals of Mathematics Studies; Vol. 195; 6 X 1.75 X 9 inches; 849 pages.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 77,73
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . .
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 81,02
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 86,22
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. In.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: PBShop.store UK, Fairford, GLOS, Reino Unido
EUR 86,01
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPAP. Condición: New. New Book. Shipped from UK. Established seller since 2000.
Publicado por Princeton University Press, 2017
ISBN 10: 069117542X ISBN 13: 9780691175423
Idioma: Inglés
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
EUR 53,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. This book has some damage, which is usually a tear, a scratch, dents or stain on the edge, pages are clean, no missing pages.
Publicado por Princeton University Press, 2017
ISBN 10: 069117542X ISBN 13: 9780691175423
Idioma: Inglés
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
EUR 53,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. This book has some damage, which is usually a tear, a scratch, dents or stain on the edge, pages are clean, no missing pages.
Publicado por Princeton University Press, 2017
ISBN 10: 069117542X ISBN 13: 9780691175423
Idioma: Inglés
Librería: Academybookshop, Long Island City, NY, Estados Unidos de America
EUR 53,39
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 83,66
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 77,07
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 81,52
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 82,63
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 98,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New. Series: Annals of Mathematics Studies. Num Pages: 880 pages, 12 line illus. BIC Classification: PBF. Category: (P) Professional & Vocational; (U) Tertiary Education (US: College). Dimension: 229 x 152. . . 2017. Paperback. . . . . Books ship from the US and Ireland.
Librería: moluna, Greven, Alemania
EUR 75,95
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Über den AutorMatthias Aschenbrenner is professor of mathematics at the University of California, Los Angeles. Lou van den Dries is professor of mathematics at the University of Illinois, Urbana-Champaign. Joris van.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 81,66
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 84,62
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Solr Books, Lincolnwood, IL, Estados Unidos de America
EUR 46,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear.
Publicado por Princeton University Press Jun 2017, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 95,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware - Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems.This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity. Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Publicado por Princeton University Press, US, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 112,52
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback. Condición: New. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 103,32
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 880 pages. 9.00x6.00x1.75 inches. In Stock.
Publicado por Princeton University Press, US, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 113,51
Convertir monedaCantidad disponible: 5 disponibles
Añadir al carritoPaperback. Condición: New. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences.
Publicado por Princeton University Press 2017-06-13, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Chiron Media, Wallingford, Reino Unido
EUR 119,19
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 147,47
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 880 pages. 9.00x6.00x1.75 inches. In Stock.
Publicado por Princeton University Press, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 94,85
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press, New Jersey, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 129,21
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transser Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Publicado por Princeton University Press, New Jersey, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: Grand Eagle Retail, Mason, OH, Estados Unidos de America
EUR 114,64
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transser Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Princeton University Press, New Jersey, 2017
ISBN 10: 0691175438 ISBN 13: 9780691175430
Idioma: Inglés
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 190,94
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transseries emerged variously as super-exact asymptotic expansions of return maps of analytic vector fields, in connection with Tarski's problem on the field of reals with exponentiation, and in mathematical physics. Their formal nature also makes them suitable for machine computations in computer algebra systems. This self-contained book validates the intuition that the differential field of transseries is a universal domain for asymptotic differential algebra. It does so by establishing in the realm of transseries a complete elimination theory for systems of algebraic differential equations with asymptotic side conditions. Beginning with background chapters on valuations and differential algebra, the book goes on to develop the basic theory of valued differential fields, including a notion of differential-henselianity.Next, H-fields are singled out among ordered valued differential fields to provide an algebraic setting for the common properties of Hardy fields and the differential field of transseries. The study of their extensions culminates in an analogue of the algebraic closure of a field: the Newton-Liouville closure of an H-field. This paves the way to a quantifier elimination with interesting consequences. Asymptotic differential algebra seeks to understand the solutions of differential equations and their asymptotics from an algebraic point of view. The differential field of transseries plays a central role in the subject. Besides powers of the variable, these series may contain exponential and logarithmic terms. Over the last thirty years, transser Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Publicado por Princeton University Press, 2017
ISBN 10: 069117542X ISBN 13: 9780691175423
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 205,36
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: New.