Publicado por LAP Lambert Academic Publishing, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 40,30
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por LAP LAMBERT Academic Publishing Nov 2013, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 28,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The Smirnov classes E¿, where p > 0, are classes of analytic functions on bounded, n-connected domains in the complex plane. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes H¿. This book explores how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes.Books on Demand GmbH, Überseering 33, 22297 Hamburg 72 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 39,78
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por LAP LAMBERT Academic Publishing Nov 2013, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 28,90
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The Smirnov classes E¿, where p > 0, are classes of analytic functions on bounded, n-connected domains in the complex plane. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes H¿. This book explores how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes. 72 pp. Englisch.
Publicado por LAP Lambert Academic Publishing, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 42,11
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 26,05
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: De Castro LisaDr. Lisa De Castro is currently a Visiting Assistant Professor of Mathematics at Florida Southern College. She received her Ph.D. from the University of South Florida. In addition to teaching and conducting research, Dr.
Publicado por LAP LAMBERT Academic Publishing, 2013
ISBN 10: 3659473987 ISBN 13: 9783659473982
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 28,90
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The Smirnov classes E¿, where p > 0, are classes of analytic functions on bounded, n-connected domains in the complex plane. Functions in these classes satisfy a certain growth condition and have a relationship to the more well known classes of functions known as the Hardy classes H¿. This book explores how the geometry of a given domain will determine the existence of non-constant analytic functions in Smirnov classes that possess real boundary values. This is a phenomenon that does not occur among functions in the Hardy classes.