Search preferences
Ir a los resultados principales

Filtros de búsqueda

Tipo de artículo

  • Todos los tipos de productos 
  • Libros (6)
  • Revistas y publicaciones (No hay ningún otro resultado que coincida con este filtro.)
  • Cómics (No hay ningún otro resultado que coincida con este filtro.)
  • Partituras (No hay ningún otro resultado que coincida con este filtro.)
  • Arte, grabados y pósters (No hay ningún otro resultado que coincida con este filtro.)
  • Fotografías (No hay ningún otro resultado que coincida con este filtro.)
  • Mapas (No hay ningún otro resultado que coincida con este filtro.)
  • Manuscritos y coleccionismo de papel (No hay ningún otro resultado que coincida con este filtro.)

Condición

Encuadernación

Más atributos

  • Primera edición (No hay ningún otro resultado que coincida con este filtro.)
  • Firmado (No hay ningún otro resultado que coincida con este filtro.)
  • Sobrecubierta (No hay ningún otro resultado que coincida con este filtro.)
  • Con imágenes (1)
  • No impresión bajo demanda (5)

Idioma (1)

Precio

  • Cualquier precio 
  • Menos de EUR 20 (No hay ningún otro resultado que coincida con este filtro.)
  • EUR 20 a EUR 45 
  • Más de EUR 45 (No hay ningún otro resultado que coincida con este filtro.)
Intervalo de precios personalizado (EUR)

Gastos de envío gratis

  • Envío gratis a España (No hay ningún otro resultado que coincida con este filtro.)

Ubicación del vendedor

  • Aremu, Bolakale

    Publicado por AB Publisher LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: Ria Christie Collections, Uxbridge, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 4,71 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New. In.

  • Aremu, Bolakale

    Publicado por AB Publisher LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: California Books, Miami, FL, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 6,98 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: Más de 20 disponibles

    Añadir al carrito

    Condición: New.

  • Bolakale Aremu

    Publicado por AB Publisher LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: CitiRetail, Stevenage, Reino Unido

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 35,51 gastos de envío desde Reino Unido a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Bolakale Aremu

    Publicado por AB Publisher LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: AussieBookSeller, Truganina, VIC, Australia

    Calificación del vendedor: 3 de 5 estrellas Valoración 3 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 32,30 gastos de envío desde Australia a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Bolakale Aremu

    Publicado por AB Publisher LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    EUR 65,48 gastos de envío desde Estados Unidos de America a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 1 disponibles

    Añadir al carrito

    Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Bolakale Aremu

    Publicado por AB PUBLISHER LLC, 2025

    ISBN 13: 9798349220203

    Idioma: Inglés

    Librería: AHA-BUCH GmbH, Einbeck, Alemania

    Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

    Contactar al vendedor

    Impresión bajo demanda

    EUR 11,99 gastos de envío desde Alemania a España

    Destinos, gastos y plazos de envío

    Cantidad disponible: 2 disponibles

    Añadir al carrito

    Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers:Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today!