Artículos relacionados a Botnet Attack Detection in the Internet of Things Using...

Botnet Attack Detection in the Internet of Things Using Selected Learning Algorithms: A Research Study on Securing IoT Against Cyber Threats Using Machine Learning - Tapa blanda

 
9798349220203: Botnet Attack Detection in the Internet of Things Using Selected Learning Algorithms: A Research Study on Securing IoT Against Cyber Threats Using Machine Learning

Sinopsis

A Must-Read for IoT Security Researchers and Machine Learning Experts

As IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.

Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.

Key Features for Academic Researchers:
  • Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.
  • Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.
  • High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.
  • Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.
  • Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.

This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.

Enhance your research and contribute to securing IoT networks-get your copy today!

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialAB Publisher LLC
  • Año de publicación2025
  • ISBN 13 9798349220203
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de páginas90
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 4,72 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Botnet Attack Detection in the Internet of Things Using...

Imagen de archivo

Aremu, Bolakale
Publicado por AB Publisher LLC, 2025
ISBN 13: 9798349220203
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9798349220203_new

Contactar al vendedor

Comprar nuevo

EUR 25,06
Convertir moneda
Gastos de envío: EUR 4,72
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Aremu, Bolakale
Publicado por AB Publisher LLC, 2025
ISBN 13: 9798349220203
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9798349220203

Contactar al vendedor

Comprar nuevo

EUR 24,51
Convertir moneda
Gastos de envío: EUR 7,05
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Bolakale Aremu
Publicado por AB PUBLISHER LLC, 2025
ISBN 13: 9798349220203
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers:Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! Nº de ref. del artículo: 9798349220203

Contactar al vendedor

Comprar nuevo

EUR 36,00
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Bolakale Aremu
Publicado por AB Publisher LLC, 2025
ISBN 13: 9798349220203
Nuevo Paperback

Librería: CitiRetail, Stevenage, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Nº de ref. del artículo: 9798349220203

Contactar al vendedor

Comprar nuevo

EUR 29,93
Convertir moneda
Gastos de envío: EUR 35,60
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Bolakale Aremu
Publicado por AB Publisher LLC, 2025
ISBN 13: 9798349220203
Nuevo Paperback

Librería: AussieBookSeller, Truganina, VIC, Australia

Calificación del vendedor: 3 de 5 estrellas Valoración 3 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Nº de ref. del artículo: 9798349220203

Contactar al vendedor

Comprar nuevo

EUR 39,01
Convertir moneda
Gastos de envío: EUR 32,61
De Australia a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Bolakale Aremu
Publicado por AB Publisher LLC, 2025
ISBN 13: 9798349220203
Nuevo Paperback

Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: new. Paperback. A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, varying computational capabilities, and different communication protocols make developing a universal botnet detection system a significant research challenge. This book provides a rigorous, data-driven approach to tackling this issue using supervised machine learning algorithms.Based on the NB-IoT-23 dataset, this research evaluates multiple classification techniques, including Logistic Regression, Linear Regression, Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), and Bagging. The findings reveal that the Bagging ensemble model outperforms others, achieving an exceptional 99.96% accuracy with minimal computational overhead, making it a strong candidate for real-world IoT botnet detection systems.Key Features for Academic Researchers: Comprehensive IoT Security Analysis - Explore the unique challenges of botnet detection across diverse IoT devices.Advanced Machine Learning Techniques - Compare different learning algorithms and their effectiveness in botnet detection.High-Quality Dataset & Empirical Evaluation - Gain insights from real-world NB-IoT-23 datasets featuring data from multiple IoT devices.Research-Backed Findings - The book presents reproducible results, making it a valuable reference for Master's and Ph.D. students exploring IoT security, cybersecurity, and machine learning.Future Research Directions - Identify gaps and opportunities for further exploration in IoT security and anomaly detection.This book serves as a practical and theoretical resource for graduate students, cybersecurity professionals, and researchers interested in IoT security, network intrusion detection, and applied machine learning.Enhance your research and contribute to securing IoT networks-get your copy today! A Must-Read for IoT Security Researchers and Machine Learning ExpertsAs IoT networks continue to expand, so do the complexities of securing them against botnet attacks. The diversity of devices, var. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9798349220203

Contactar al vendedor

Comprar nuevo

EUR 26,63
Convertir moneda
Gastos de envío: EUR 66,10
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito