Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: moluna, Greven, Alemania
EUR 55,21
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2011, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 68,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.Books on Demand GmbH, Überseering 33, 22297 Hamburg 172 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: Revaluation Books, Exeter, Reino Unido
EUR 132,89
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Brand New. 172 pages. 8.66x5.91x0.39 inches. In Stock.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Nov 2011, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 68,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. 172 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 68,00
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3846507490 ISBN 13: 9783846507490
Librería: preigu, Osnabrück, Alemania
EUR 57,30
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. The Regression Model of Machine Translation | Learning, Instance Selection, Decoding, and Evaluation | Mehmet Ergun Biçici | Taschenbuch | 172 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783846507490 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand.