Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.
"Sinopsis" puede pertenecer a otra edición de este libro.
Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.
Mehmet Ergun Biçici received his Bachelor of Science degree in Computer Science from Bilkent University, Ankara, Turkey in 2000. He obtained Master of Science degree in Computer Science from North Carolina State University, USA, in 2002. He obtained the Doctor of Philosophy degree in Computer Engineering at Koç University, Istanbul, Turkey in 2011.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5495410
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. 172 pp. Englisch. Nº de ref. del artículo: 9783846507490
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary. Nº de ref. del artículo: 9783846507490
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Regression based machine translation (RegMT) model provides a learning framework for machine translation, separating learning models for training, training instance selection, feature representation, and decoding. Transductive learning approach employs training instance selection algorithms that not only make RegMT computationally more scalable but also improve the performance of standard statistical machine translation (SMT) systems. Sparse regression models for SMT are introduced and the obtained results demonstrate that sparse regression models perform better than other learning models in predicting target features, estimating word alignments, creating phrase tables, and generating translation outputs. We develop good evaluation techniques for measuring the performance of the RegMT model and the quality of the translations. We demonstrate that sparse L1 regularized regression performs better than L2 regularized regression in the German-English translation task and in the Spanish-English translation task when using small sized training sets. Graph based decoding can provide an alternative to phrase-based decoding in translation domains having low vocabulary.Books on Demand GmbH, Überseering 33, 22297 Hamburg 172 pp. Englisch. Nº de ref. del artículo: 9783846507490
Cantidad disponible: 2 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 172 pages. 8.66x5.91x0.39 inches. In Stock. Nº de ref. del artículo: __3846507490
Cantidad disponible: 1 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 172 pages. 8.66x5.91x0.39 inches. In Stock. Nº de ref. del artículo: 3846507490
Cantidad disponible: 1 disponibles