Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 80,48
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 79,32
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 82,19
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 83,35
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer-Verlag Berlin and Heidelberg GmbH & Co. KG, Germany, Berlin, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: WorldofBooks, Goring-By-Sea, WS, Reino Unido
EUR 100,29
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good. Rules the clearest, most explored and best understood form of knowledge representation are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning. The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data. The book has been read, but is in excellent condition. Pages are intact and not marred by notes or highlighting. The spine remains undamaged.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 109,54
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 354.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: Revaluation Books, Exeter, Reino Unido
EUR 120,32
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 2012 edition. 353 pages. 9.00x6.25x0.80 inches. In Stock.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Nov 2012, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 80,24
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -Rules ¿ the clearest, most explored and best understood form of knowledge representation ¿ are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 80,24
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 144,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 135,20
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 165,49
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg Nov 2012, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 80,24
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Rules - the clearest, most explored and best understood form of knowledge representation - are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data. 352 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 109,37
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 354 94 Illus.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3540751963 ISBN 13: 9783540751960
Librería: moluna, Greven, Alemania
EUR 70,33
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fills a significant gap in the machine learning literatureExplains the most comprehensive knowledge representation formalismOffers researchers and graduate students a clear unifying terminologyProf. Dr. Johannes Fuernkranz .
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 112,06
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 354.