Librería: Books From California, Simi Valley, CA, Estados Unidos de America
EUR 13,06
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Very Good.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 30,90
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Librería: Lakeside Books, Benton Harbor, MI, Estados Unidos de America
EUR 29,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 36,70
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 34,74
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Original o primera edición
EUR 45,40
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2023. 1st ed. Paperback. . . . . .
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 41,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 48,82
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 291 pages. 9.25x6.10x0.61 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 46,60
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 55,20
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2023. 1st ed. Paperback. . . . . . Books ship from the US and Ireland.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,07
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
EUR 74,97
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 292.
Idioma: Inglés
Publicado por Apress, Apress Jul 2023, 2023
ISBN 10: 1484296419 ISBN 13: 9781484296417
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.MLOps Lifecycle Toolkit walks you through the principles of software engineering, assuming no prior experience. It addresses the perennial ¿why¿ of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, yoüll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter not Elektronisches Buch to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. Yoüll gain insight into the technical and architectural decisions yoüre likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps ¿toolkit¿ that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.What You Will LearnUnderstand the principles of software engineering and MLOpsDesign an end-to-endmachine learning systemBalance technical decisions and architectural trade-offsGain insight into the fundamental problems unique to each industry and how to solve themWho This Book Is ForData scientists, machine learning engineers, and software professionals.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 292 pp. Englisch.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 53,49
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.MLOps Lifecycle Toolkitwalks you through the principles of software engineering, assuming no prior experience. It addresses the perennial 'why' of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you'll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter not Elektronisches Buch to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You'll gain insight into the technical and architectural decisions you're likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps 'toolkit' that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.What You Will LearnUnderstand the principles of software engineering and MLOpsDesign an end-to-end machine learning systemBalance technical decisions and architectural trade-offsGain insight into the fundamental problems unique to each industry and how to solve themWho This Book Is ForData scientists, machine learning engineers, and software professionals. 292 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 74,87
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 292.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 77,30
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 292.
Librería: moluna, Greven, Alemania
EUR 44,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Explains deploying machine learning models with accuracy, extensibility, scalability, and reliabilityCovers deploying ML systems in a variety of industries with case studiesExplains how to create value by taking ownership of the complete m.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 54,13
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book is aimed at practitioners of data science, with consideration for bespoke problems, standards, and tech stacks between industries. It will guide you through the fundamentals of technical decision making, including planning, building, optimizing, packaging, and deploying end-to-end, reliable, and robust stochastic workflows using the language of data science.MLOps Lifecycle Toolkitwalks you through the principles of software engineering, assuming no prior experience. It addresses the perennial 'why' of MLOps early, along with insight into the unique challenges of engineering stochastic systems. Next, you'll discover resources to learn software craftsmanship, data-driven testing frameworks, and computer science. Additionally, you will see how to transition from Jupyter not Elektronisches Buch to code editors, and leverage infrastructure and cloud services to take control of the entire machine learning lifecycle. You'll gain insight into the technical and architectural decisions you're likely to encounter, as well as best practices for deploying accurate, extensible, scalable, and reliable models. Through hands-on labs, you will build your own MLOps 'toolkit' that you can use to accelerate your own projects. In later chapters, author Dayne Sorvisto takes a thoughtful, bottom-up approach to machine learning engineering by considering the hard problems unique to industries such as high finance, energy, healthcare, and tech as case studies, along with the ethical and technical constraints that shape decision making.After reading this book, whether you are a data scientist, product manager, or industry decision maker, you will be equipped to deploy models to production, understand the nuances of MLOps in the domain language of your industry, and have the resources for continuous delivery and learning.What You Will LearnUnderstand the principles of software engineering and MLOpsDesign an end-to-endmachine learning systemBalance technical decisions and architectural trade-offsGain insight into the fundamental problems unique to each industry and how to solve themWho This Book Is ForData scientists, machine learning engineers, and software professionals.
Librería: preigu, Osnabrück, Alemania
EUR 46,10
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. MLOps Lifecycle Toolkit | A Software Engineering Roadmap for Designing, Deploying, and Scaling Stochastic Systems | Dayne Sorvisto | Taschenbuch | xxii | Englisch | 2023 | Apress | EAN 9781484296417 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.