Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 158,39
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 174,25
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 176,57
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 158,38
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 179,25
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 179,59
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 0792349970 ISBN 13: 9780792349976
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 204,67
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This work is devoted to an investigation of polynomial optimization problems, including Boolean problems which are the most important part of mathematical programming. It demonstrates methods of nondifferentiable optimization that can be used for finding solutions to many polynomial problems. Series: Nonconvex Optimization and Its Applications. Num Pages: 413 pages, biography. BIC Classification: PBF; PBW; UM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 155 x 23. Weight in Grams: 758. . 1998. Hardback. . . . .
EUR 112,73
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 396 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar.
EUR 176,04
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New. Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, 1998
ISBN 10: 0792349970 ISBN 13: 9780792349976
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 254,30
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. This work is devoted to an investigation of polynomial optimization problems, including Boolean problems which are the most important part of mathematical programming. It demonstrates methods of nondifferentiable optimization that can be used for finding solutions to many polynomial problems. Series: Nonconvex Optimization and Its Applications. Num Pages: 413 pages, biography. BIC Classification: PBF; PBW; UM. Category: (P) Professional & Vocational; (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 155 x 23. Weight in Grams: 758. . 1998. Hardback. . . . . Books ship from the US and Ireland.
EUR 244,90
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware - Polynomial extremal problems (PEP) constitute one of the most important subclasses of nonlinear programming models. Their distinctive feature is that an objective function and constraints can be expressed by polynomial functions in one or several variables. Let :e = {:e 1, . , :en} be the vector in n-dimensional real linear space Rn; n PO(:e), PI (:e), . , Pm (:e) are polynomial functions in R with real coefficients. In general, a PEP can be formulated in the following form: (0.1) find r = inf Po(:e) subject to constraints (0.2) Pi (:e) =0, i=l, . ,m (a constraint in the form of inequality can be written in the form of equality by introducing a new variable: for example, P( x) ~ 0 is equivalent to P(:e) + y2 = 0). Boolean and mixed polynomial problems can be written in usual form by adding for each boolean variable z the equality: Z2 - Z = O. Let a = {al, . ,a } be integer vector with nonnegative entries {a;}f=l. n Denote by R[a](:e) monomial in n variables of the form: n R[a](:e) = IT :ef'; ;=1 d(a) = 2:7=1 ai is the total degree of monomial R[a]. Each polynomial in n variables can be written as sum of monomials with nonzero coefficients: P(:e) = L caR[a](:e), aEA{P) IX x Nondifferentiable optimization and polynomial problems where A(P) is the set of monomials contained in polynomial P.