Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 106,69
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 300.
Idioma: Inglés
Publicado por Springer New York, Springer New York Apr 2016, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 74,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch.
Idioma: Inglés
Publicado por Springer New York, Springer New York, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 81,66
Cantidad disponible: 1 disponibles
Añadir al carritoBuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 124,87
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Springer New York Apr 2016, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 74,89
Cantidad disponible: 2 disponibles
Añadir al carritoBuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. 600 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 104,03
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand pp. 300.
Librería: moluna, Greven, Alemania
EUR 64,33
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces fundamental statistical, geometric and algebraic conceptsEncompasses relevant data clustering and modeling methods in machine learningAddresses a general class of unsupervised learning problemsGeneralizes the theory and me.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 108,81
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND pp. 300.
Librería: preigu, Osnabrück, Alemania
EUR 66,75
Cantidad disponible: 5 disponibles
Añadir al carritoBuch. Condición: Neu. Generalized Principal Component Analysis | René Vidal (u. a.) | Buch | xxxii | Englisch | 2016 | Springer | EAN 9780387878102 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.