Artículos relacionados a Generalized Principal Component Analysis: 40 (Interdisciplin...

Generalized Principal Component Analysis: 40 (Interdisciplinary Applied Mathematics) - Tapa dura

 
9780387878102: Generalized Principal Component Analysis: 40 (Interdisciplinary Applied Mathematics)

Sinopsis

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.

This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.

René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. 

Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.

Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.

S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

De la contraportada

This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.

This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.

René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. 

Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.

"Sobre este título" puede pertenecer a otra edición de este libro.

  • EditorialSpringer-Verlag New York Inc.
  • Año de publicación2016
  • ISBN 10 0387878106
  • ISBN 13 9780387878102
  • EncuadernaciónTapa dura
  • IdiomaInglés
  • Número de edición1
  • Número de páginas566
  • Contacto del fabricanteno disponible

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 29,19 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 10,33 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9781493979127: Generalized Principal Component Analysis: 40 (Interdisciplinary Applied Mathematics)

Edición Destacada

ISBN 10:  1493979124 ISBN 13:  9781493979127
Editorial: Springer, 2018
Tapa blanda

Resultados de la búsqueda para Generalized Principal Component Analysis: 40 (Interdisciplin...

Imagen de archivo

Vidal, René; Ma, Yi; Sastry, Shankar
Publicado por Springer, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 300. Nº de ref. del artículo: 373485330

Contactar al vendedor

Comprar nuevo

EUR 70,04
Convertir moneda
Gastos de envío: EUR 10,33
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Vidal, René; Ma, Yi; Sastry, Shankar
Publicado por Springer, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 300. Nº de ref. del artículo: 26372592845

Contactar al vendedor

Comprar nuevo

EUR 70,83
Convertir moneda
Gastos de envío: EUR 9,98
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

René Vidal|Yi Ma|Shankar Sastry
Publicado por Springer New York, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduces fundamental statistical, geometric and algebraic conceptsEncompasses relevant data clustering and modeling methods in machine learningAddresses a general class of unsupervised learning problemsGeneralizes the theory and me. Nº de ref. del artículo: 31557515

Contactar al vendedor

Comprar nuevo

EUR 64,33
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

René Vidal
Publicado por Springer New York Apr 2016, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. 600 pp. Englisch. Nº de ref. del artículo: 9780387878102

Contactar al vendedor

Comprar nuevo

EUR 74,89
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Vidal, René; Ma, Yi; Sastry, Shankar
Publicado por Springer, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 300. Nº de ref. del artículo: 18372592839

Contactar al vendedor

Comprar nuevo

EUR 75,04
Convertir moneda
Gastos de envío: EUR 14,50
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

0
Publicado por Springer, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: Basi6 International, Irving, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-18340

Contactar al vendedor

Comprar nuevo

EUR 64,67
Convertir moneda
Gastos de envío: EUR 26,03
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

René Vidal
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc. This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.RenéVidalis a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University.Yi Mais Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University.S. Shankar Sastryis Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley. Nº de ref. del artículo: 9780387878102

Contactar al vendedor

Comprar nuevo

EUR 81,66
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

René Vidal
ISBN 10: 0387878106 ISBN 13: 9780387878102
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -This book provides a comprehensive introduction to the latest advances in the mathematical theory and computational tools for modeling high-dimensional data drawn from one or multiple low-dimensional subspaces (or manifolds) and potentially corrupted by noise, gross errors, or outliers. This challenging task requires the development of new algebraic, geometric, statistical, and computational methods for efficient and robust estimation and segmentation of one or multiple subspaces. The book also presents interesting real-world applications of these new methods in image processing, image and video segmentation, face recognition and clustering, and hybrid system identification etc.This book is intended to serve as a textbook for graduate students and beginning researchers in data science, machine learning, computer vision, image and signal processing, and systems theory. It contains ample illustrations, examples, and exercises and is made largely self-contained with three Appendices which survey basic concepts and principles from statistics, optimization, and algebraic-geometry used in this book.René Vidal is a Professor of Biomedical Engineering and Director of the Vision Dynamics and Learning Lab at The Johns Hopkins University. Yi Ma is Executive Dean and Professor at the School of Information Science and Technology at ShanghaiTech University. S. Shankar Sastry is Dean of the College of Engineering, Professor of Electrical Engineering and Computer Science and Professor of Bioengineering at the University of California, Berkeley.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 600 pp. Englisch. Nº de ref. del artículo: 9780387878102

Contactar al vendedor

Comprar nuevo

EUR 74,89
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Vidal, René, Ma, Yi, Sastry, Shankar
Publicado por Springer, 2016
ISBN 10: 0387878106 ISBN 13: 9780387878102
Antiguo o usado Tapa dura

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Hardcover. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77303878781066

Contactar al vendedor

Comprar usado

EUR 122,66
Convertir moneda
Gastos de envío: EUR 29,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito