Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 103,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 103,15
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 114,10
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 104,32
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 118,03
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 148,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 144,60
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 214 pages. 10.00x8.00x10.00 inches. In Stock.
Librería: Rarewaves.com UK, London, Reino Unido
EUR 140,74
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 105,81
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.ContributorsAleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurelie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
EUR 125,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback / softback. Condición: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 113,93
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.ContributorsAleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurelie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: CitiRetail, Stevenage, Reino Unido
EUR 114,12
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.Log-linear models play a key role in modern big data and machine learning applications. From simple binary classification models through partition functions, conditional random fields, and neural nets, log-linear structure is closely related to performance in certain applications and influences fitting techniques used to train models. This volume covers recent advances in training models with log-linear structures, covering the underlying geometry, optimization techniques, and multiple applications. The first chapter shows readers the inner workings of machine learning, providing insights into the geometry of log-linear and neural net models. The other chapters range from introductory material to optimization techniques to involved use cases. The book, which grew out of a NIPS workshop, is suitable for graduate students doing research in machine learning, in particular deep learning, variable selection, and applications to speech recognition. The contributors come from academia and industry, allowing readers to view the field from both perspectives.ContributorsAleksandr Aravkin, Avishy Carmi, Guillermo A. Cecchi, Anna Choromanska, Li Deng, Xinwei Deng, Jean Honorio, Tony Jebara, Huijing Jiang, Dimitri Kanevsky, Brian Kingsbury, Fabrice Lambert, Aurelie C. Lozano, Daniel Moskovich, Yuriy S. Polyakov, Bhuvana Ramabhadran, Irina Rish, Dimitris Samaras, Tara N. Sainath, Hagen Soltau, Serge F. Timashev, Ewout van den Berg This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: preigu, Osnabrück, Alemania
EUR 117,20
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Log-Linear Models, Extensions, and Applications | Aleksandr Aravkin (u. a.) | Taschenbuch | Englisch | 2024 | MIT Press | EAN 9780262553469 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 140,04
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Advances in training models with log-linear structures, with topics including variable selection, the geometry of neural nets, and applications.