Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125503 ISBN 13: 9780691125503
Librería: Bookmonger.Ltd, HILLSIDE, NJ, Estados Unidos de America
EUR 40,32
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Fine.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Estados Unidos de America
EUR 40,10
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Very Good+. Text clean and tight; AM-161; 8vo 8" - 9" tall; 392 pages.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 45,25
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 48,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 47,55
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 54,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 41,63
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 40,32
Cantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 41,62
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 48,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 69,15
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2012 edition. 148 pages. 9.00x6.00x0.50 inches. In Stock.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 95,82
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 97,30
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 96,12
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 388 Index.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642239781 ISBN 13: 9783642239786
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 37,40
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Majestic Books, Hounslow, Reino Unido
EUR 96,78
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. pp. 388 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 98,06
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 101,49
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New.
Publicado por Princeton University Press 2006., 2006
Librería: Antiquariaat Ovidius, Bredevoort, Holanda
EUR 40,00
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Gebraucht / Used. Paperback. Very good. Vii,373pp.
Idioma: Inglés
Publicado por Princeton University Press, US, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 129,17
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New. Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations.The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.
Idioma: Inglés
Publicado por Princeton University Press, US, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 129,23
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations.The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 167,90
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 373 pages. 8.75x6.00x1.00 inches. In Stock.
Idioma: Inglés
Publicado por Princeton University Press, US, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: Rarewaves.com UK, London, Reino Unido
EUR 122,50
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: New. Modular Forms and Special Cycles on Shimura Curves is a thorough study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface "M" attached to a Shimura curve "M" over the field of rational numbers. These generating functions are shown to be the q-expansions of modular forms and Siegel modular forms of genus two respectively, valued in the Gillet-Soule arithmetic Chow groups of "M". The two types of generating functions are related via an arithmetic inner product formula. In addition, an analogue of the classical Siegel-Weil formula identifies the generating function for zero-cycles as the central derivative of a Siegel Eisenstein series. As an application, an arithmetic analogue of the Shimura-Waldspurger correspondence is constructed, carrying holomorphic cusp forms of weight 3/2 to classes in the Mordell-Weil group of "M". In certain cases, the nonvanishing of this correspondence is related to the central derivative of the standard L-function for a modular form of weight 2. These results depend on a novel mixture of modular forms and arithmetic geometry and should provide a paradigm for further investigations.The proofs involve a wide range of techniques, including arithmetic intersection theory, the arithmetic adjunction formula, representation densities of quadratic forms, deformation theory of p-divisible groups, p-adic uniformization, the Weil representation, the local and global theta correspondence, and the doubling integral representation of L-functions.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg Jan 2012, 2012
ISBN 10: 3642239781 ISBN 13: 9783642239786
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 37,40
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series. 152 pp. Englisch.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, 2012
ISBN 10: 3642239781 ISBN 13: 9783642239786
Librería: moluna, Greven, Alemania
EUR 35,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Develops new methods in explicit arithmetic intersection theory Develops new techniques for the study of Shimura varieties and automorphic forms, central objects in modern number theory Proves new cases of conjectures of S. Kudla.
Idioma: Inglés
Publicado por Springer Berlin Heidelberg, Springer Berlin Heidelberg Jan 2012, 2012
ISBN 10: 3642239781 ISBN 13: 9783642239786
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 37,40
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph treats one case of a series of conjectures by S. Kudla, whose goal is to show that Fourier of Eisenstein series encode information about the Arakelov intersection theory of special cycles on Shimura varieties of orthogonal and unitary type. Here, the Eisenstein series is a Hilbert modular form of weight one over a real quadratic field, the Shimura variety is a classical Hilbert modular surface, and the special cycles are complex multiplication points and the Hirzebruch-Zagier divisors. By developing new techniques in deformation theory, the authors successfully compute the Arakelov intersection multiplicities of these divisors, and show that they agree with the Fourier coefficients of derivatives of Eisenstein series.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 124,21
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 373 pages. 8.75x6.00x1.00 inches. In Stock. This item is printed on demand.
Idioma: Inglés
Publicado por Princeton University Press, 2006
ISBN 10: 0691125511 ISBN 13: 9780691125510
Librería: moluna, Greven, Alemania
EUR 96,20
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A study of the generating functions constructed from special cycles, both divisors and zero-cycles, on the arithmetic surface M attached to a Shimura curve M over the field of rational numbers.Über den AutorStephen S. Kudla,.