Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Jul 2012, 2012
ISBN 10: 3659154318 ISBN 13: 9783659154317
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 49,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -This book presents a novel approach for Face Recognition using ¿Vector Quantization¿. Face Recognition is one of the popular biometric techniques used in today¿s era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast¿only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques.Books on Demand GmbH, Überseering 33, 22297 Hamburg 96 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3848491907 ISBN 13: 9783848491902
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 114,62
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659154318 ISBN 13: 9783659154317
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 114,62
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing Jul 2012, 2012
ISBN 10: 3659154318 ISBN 13: 9783659154317
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 49,00
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a novel approach for Face Recognition using 'Vector Quantization'. Face Recognition is one of the popular biometric techniques used in today's era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast-only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques. 96 pp. Englisch.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659154318 ISBN 13: 9783659154317
Librería: moluna, Greven, Alemania
EUR 41,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Natu PrachiPrachi Natu has received M.E. (Computer) degree from Mumbai University with distinction in 2010. She has 07 years of experience in teaching.Her areas of interest are Image Processing, Database Management Systems, Operating.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3848491907 ISBN 13: 9783848491902
Librería: moluna, Greven, Alemania
EUR 41,67
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Natu ShachiMs. Shachi Natu has received M.E.(Computer) degree from Mumbai University with distinction in 2010. She has 07 years of experience in teaching. Currently working as Assistant Professor in department of I.T. at Thadomal Sha.
Idioma: Inglés
Publicado por LAP LAMBERT Academic Publishing, 2012
ISBN 10: 3659154318 ISBN 13: 9783659154317
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 49,00
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents a novel approach for Face Recognition using 'Vector Quantization'. Face Recognition is one of the popular biometric techniques used in today's era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast-only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques.