This book presents a novel approach for Face Recognition using ‘Vector Quantization’. Face Recognition is one of the popular biometric techniques used in today’s era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast—only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book presents a novel approach for Face Recognition using ‘Vector Quantization’. Face Recognition is one of the popular biometric techniques used in today’s era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast—only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques.
Prachi Natu has received M.E. (Computer) degree from Mumbai University with distinction in 2010. She has 07 years of experience in teaching.Her areas of interest are Image Processing, Database Management Systems, Operating systems and Data Structure. She has 11 papers in International Conferences/journal to her credit.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,90 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a novel approach for Face Recognition using 'Vector Quantization'. Face Recognition is one of the popular biometric techniques used in today's era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast-only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques. 96 pp. Englisch. Nº de ref. del artículo: 9783659154317
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Natu PrachiPrachi Natu has received M.E. (Computer) degree from Mumbai University with distinction in 2010. She has 07 years of experience in teaching.Her areas of interest are Image Processing, Database Management Systems, Operating. Nº de ref. del artículo: 5135450
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book presents a novel approach for Face Recognition using 'Vector Quantization'. Face Recognition is one of the popular biometric techniques used in today's era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast-only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques. Nº de ref. del artículo: 9783659154317
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -This book presents a novel approach for Face Recognition using ¿Vector Quantization¿. Face Recognition is one of the popular biometric techniques used in today¿s era. A face recognition system is a computer application for automatically identifying or verifying a person from a digital image or a video frame from a video source. Vector quantization is simple image compression technique. It is efficient for image coding because it reduces computational complexity. VQ compression is highly asymmetric in processing time: choosing an optimal codebook takes huge amounts of calculations, but decompression is lightning-fast¿only one table lookup per vector. This makes VQ an excellent choice for face recognition. In this book four different VQ algorithms namely LBG, KPE, KMCG and KFCG are used to observe the efficiency of face recognition system. Efficiency is calculated in terms of recognition rate and computational complexity. It has been observed that KPE, KMCG and KFCG outperform LBG which is known as benchmark in vector quantization. Proposed techniques are compared with traditional DCT and Walsh transform also. It proves better than transform techniques.Books on Demand GmbH, Überseering 33, 22297 Hamburg 96 pp. Englisch. Nº de ref. del artículo: 9783659154317
Cantidad disponible: 2 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA80036591543186
Cantidad disponible: 1 disponibles