Idioma: Inglés
Publicado por Birkhauser, Boston, MA, 1997
ISBN 10: 0817634398 ISBN 13: 9780817634391
EUR 8,18
Cantidad disponible: 1 disponibles
Añadir al carritoCloth. Condición: Very Good. 212 pp. Tightly bound. Corners not bumped. Text is Free of Markings. No ownership markings.
Librería: Munster & Company LLC, ABAA/ILAB, Corvallis, OR, Estados Unidos de America
EUR 21,52
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Near Fine. Boston: Birkhauser, 1989. viii,212 pp. 23.5 x 15.5 cm. Glossy paper covered boards printed dark green with white lettering. Very light rubbing to covers consistent with minimal shelfwear. Interior is clean and unmarked. Binding firm. . Hard Cover. Near Fine.
Idioma: Inglés
Publicado por American Mathematical Society, 2001
ISBN 10: 0821827057 ISBN 13: 9780821827055
Librería: Michener & Rutledge Booksellers, Inc., Baldwin City, KS, Estados Unidos de America
EUR 30,56
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: Very Good. Text clean and solid; no dust jacket; Fields Institute Monographs, 15; 0.5 x 10.2 x 7.2 Inches; 111 pages.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 52,06
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 50,92
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Birkhauser Boston Inc, Secaucus, 1989
ISBN 10: 0817634398 ISBN 13: 9780817634391
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 64,59
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,59
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 58,59
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 74,53
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. pp. 228.
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 68,23
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Paperback. . . . . .
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
EUR 73,42
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: Progress in Mathematics. Num Pages: 216 pages, biography. BIC Classification: PBF. Category: (G) General (US: Trade); (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 155 x 14. Weight in Grams: 1100. . 1989. Hardback. . . . .
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
EUR 87,19
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 81,88
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. 2011. Paperback. . . . . . Books ship from the US and Ireland.
Librería: moluna, Greven, Alemania
EUR 48,37
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Kennys Bookstore, Olney, MD, Estados Unidos de America
EUR 88,67
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New. Series: Progress in Mathematics. Num Pages: 216 pages, biography. BIC Classification: PBF. Category: (G) General (US: Trade); (UP) Postgraduate, Research & Scholarly; (UU) Undergraduate. Dimension: 235 x 155 x 14. Weight in Grams: 1100. . 1989. Hardback. . . . . Books ship from the US and Ireland.
Librería: ALLBOOKS1, Direk, SA, Australia
EUR 99,60
Cantidad disponible: 1 disponibles
Añadir al carritoBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Librería: moluna, Greven, Alemania
EUR 64,08
Cantidad disponible: Más de 20 disponibles
Añadir al carritoGebunden. Condición: New.
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 58,39
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - A mathematically precise definition of the intuitive notion of 'algorithm' was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 98,64
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: Like New. Like New. book.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 129,19
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Buchpark, Trebbin, Alemania
EUR 41,96
Cantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A.
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Original o primera edición
EUR 157,05
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Recent major advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Audience: Graduate students in logic and others wishing to keep abreast of current trends in model theory. The lectures contain sufficient introductory material to be able to grasp the recent results presented. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 154,78
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 153,66
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Kluwer Academic Publishers, Dordrecht, 1997
ISBN 10: 0792346661 ISBN 13: 9780792346661
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
EUR 157,46
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. Current advances in model theory include connections between model theory and Diophantine and real analytic geometry, permutation groups, and finite algebras. This text contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. The book is aimed at graduate students in logic and others wishing to keep abreast of current trends in model theory. The present book contains lectures on recent results in algebraic model theory, covering topics from the following areas: geometric model theory, the model theory of analytic structures, permutation groups in model theory, the spectra of countable theories, and the structure of finite algebras. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 155,19
Cantidad disponible: 15 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 154,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Birkhauser Boston Inc, Secaucus, 1989
ISBN 10: 0817634398 ISBN 13: 9780817634391
Librería: AussieBookSeller, Truganina, VIC, Australia
EUR 129,12
Cantidad disponible: 1 disponibles
Añadir al carritoHardcover. Condición: new. Hardcover. A mathematically precise definition of the intuitive notion of "algorithm" was implicit in Kurt Godel's [1931] paper on formally undecidable propo sitions of arithmetic. During the 1930s, in the work of such mathemati cians as Alonzo Church, Stephen Kleene, Barkley Rosser and Alfred Tarski, Godel's idea evolved into the concept of a recursive function. Church pro posed the thesis, generally accepted today, that an effective algorithm is the same thing as a procedure whose output is a recursive function of the input (suitably coded as an integer). With these concepts, it became possible to prove that many familiar theories are undecidable (or non-recursive)-i. e. , that there does not exist an effective algorithm (recursive function) which would allow one to determine which sentences belong to the theory. It was clear from the beginning that any theory with a rich enough mathematical content must be undecidable. On the other hand, some theories with a substantial content are decidable. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). The de termination of precise lines of division between the classes of decidable and undecidable theories became an important goal of research in this area. algebra we mean simply any structure (A, h(i E I)} consisting of By an a nonvoid set A and a system of finitary operations Ii over A. Examples of such decidabLe theories are the theory of Boolean algebras (Tarski [1949]), the theory of Abelian groups (Szmiele~ [1955]), and the theories of elementary arithmetic and geometry (Tarski [1951]' but Tarski discovered these results around 1930). Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 159,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 159,61
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.