Librería: California Books, Miami, FL, Estados Unidos de America
EUR 34,83
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 57,44
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 52,64
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 50,78
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 65,22
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 67,52
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed. The development of "intelligent" systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to "intelligent" machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Librería: HPB-Red, Dallas, TX, Estados Unidos de America
EUR 66,14
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 53,73
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 59,19
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
EUR 17,95
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Technical Report from the year 1998 in the subject Mathematics - Statistics, grade: 1.0, Technical University of Denmark (Institute for Mathematical Modeling), language: English, abstract: Most human brain imaging experiments involve a number of subjects that is unusually low by accepted statistical standards. Although there are a number of practical reasons for using small samples in neuroimaging we need to face the question regarding whether results obtained with only a few subjects will generalise to a larger population. In this contribution we address this issue using a Bayesian framework, derive confidence intervals for small samples experiments, and discuss the issue of the prior.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 101,80
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 114,94
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Springer Nature Switzerland AG, CH, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: Rarewaves.com UK, London, Reino Unido
EUR 63,51
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. 2019 ed. The development of "intelligent" systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to "intelligent" machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 138,96
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Mispah books, Redhill, SURRE, Reino Unido
EUR 124,76
Cantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: New. NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Idioma: Inglés
Publicado por Springer-Verlag New York Inc, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: Revaluation Books, Exeter, Reino Unido
EUR 153,82
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 438 pages. 9.50x6.25x0.75 inches. In Stock.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Aug 2019, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -The development of ¿intelligent¿ systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to ¿intelligent¿ machines. For sensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue to perform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications of interpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems; evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 452 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 106,99
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The development of 'intelligent' systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to 'intelligent' machines. Forsensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue toperform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications ofinterpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems;evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI.
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 17,95
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Technical Report from the year 1998 in the subject Mathematics - Statistics, grade: 1.0, Technical University of Denmark (Institute for Mathematical Modeling), language: English, abstract: Most human brain imaging experiments involve a number of subjects that is unusually low by accepted statistical standards. Although there are a number of practical reasons for using small samples in neuroimaging we need to face the question regarding whether results obtained with only a few subjects will generalise to a larger population. In this contribution we address this issue using a Bayesian framework, derive confidence intervals for small samples experiments, and discuss the issue of the prior. 28 pp. Englisch.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Nature Switzerland Aug 2019, 2019
ISBN 10: 3030289532 ISBN 13: 9783030289539
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 106,99
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The development of 'intelligent' systems that can take decisions and perform autonomously might lead to faster and more consistent decisions. A limiting factor for a broader adoption of AI technology is the inherent risks that come with giving up human control and oversight to 'intelligent' machines. Forsensitive tasks involving critical infrastructures and affecting human well-being or health, it is crucial to limit the possibility of improper, non-robust and unsafe decisions and actions. Before deploying an AI system, we see a strong need to validate its behavior, and thus establish guarantees that it will continue toperform as expected when deployed in a real-world environment. In pursuit of that objective, ways for humans to verify the agreement between the AI decision structure and their own ground-truth knowledge have been explored. Explainable AI (XAI) has developed as a subfield of AI, focused on exposing complex AI models to humans in a systematic and interpretable manner.The 22 chapters included in this book provide a timely snapshot of algorithms, theory, and applications ofinterpretable and explainable AI and AI techniques that have been proposed recently reflecting the current discourse in this field and providing directions of future development. The book is organized in six parts: towards AI transparency; methods for interpreting AI systems; explaining the decisions of AI systems;evaluating interpretability and explanations; applications of explainable AI; and software for explainable AI. 452 pp. Englisch.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 143,75
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand This item is printed on demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 147,38
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Librería: preigu, Osnabrück, Alemania
EUR 95,70
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Explainable AI: Interpreting, Explaining and Visualizing Deep Learning | Wojciech Samek (u. a.) | Taschenbuch | xi | Englisch | 2019 | Springer | EAN 9783030289539 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.