Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 24,81
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 27,13
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 25,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 33,93
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. 1st edition NO-PA16APR2015-KAP.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 22,43
Cantidad disponible: 10 disponibles
Añadir al carritoPF. Condición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 26,27
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In English.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 25,30
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 31,88
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 73 pages. 9.25x7.51x0.16 inches. In Stock.
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 29,05
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Springer International Publishing, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 21,39
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.
Idioma: Inglés
Publicado por Springer International Publishing AG, CH, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Librería: Rarewaves.com UK, London, Reino Unido
EUR 25,31
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 30,41
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 31,70
Cantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Idioma: Inglés
Publicado por Springer International Publishing Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 21,39
Cantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use. 76 pp. Englisch.
Idioma: Inglés
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Librería: moluna, Greven, Alemania
EUR 21,57
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume th.
Idioma: Inglés
Publicado por Springer International Publishing, Springer Apr 2021, 2021
ISBN 10: 3031013050 ISBN 13: 9783031013058
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 21,39
Cantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Computational analysis of natural science experiments often confronts noisy data due to natural variability in environment or measurement. Drawing conclusions in the face of such noise entails a statistical analysis. Parametric statistical methods assume that the data is a sample from a population that can be characterized by a specific distribution (e.g., a normal distribution). When the assumption is true, parametric approaches can lead to high confidence predictions. However, in many cases particular distribution assumptions do not hold. In that case, assuming a distribution may yield false conclusions. The companion book Statistics is Easy, gave a (nearly) equation-free introduction to nonparametric (i.e., no distribution assumption) statistical methods. The present book applies data preparation, machine learning, and nonparametric statistics to three quite different life science datasets. We provide the code as applied to each dataset in both R and Python 3. We also include exercises for self-study or classroom use.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 76 pp. Englisch.
Librería: preigu, Osnabrück, Alemania
EUR 21,55
Cantidad disponible: 5 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Statistics is Easy | Case Studies on Real Scientific Datasets | Manpreet Singh Katari (u. a.) | Taschenbuch | xi | Englisch | 2021 | Springer | EAN 9783031013058 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.