Publicado por Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Idioma: Inglés
Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido
EUR 10,28
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind.
Publicado por Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Idioma: Inglés
Librería: medimops, Berlin, Alemania
EUR 33,00
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: good. Befriedigend/Good: Durchschnittlich erhaltenes Buch bzw. Schutzumschlag mit Gebrauchsspuren, aber vollständigen Seiten. / Describes the average WORN book or dust jacket that has all the pages present.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 35,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Librería: Buchpark, Trebbin, Alemania
EUR 34,65
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Sehr gut. Zustand: Sehr gut | Seiten: 451 | Sprache: Englisch | Produktart: Bücher.
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 37,20
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: AHA-BUCH GmbH, Einbeck, Alemania
EUR 32,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration.
Publicado por Berlin ; Heidelberg : Springer, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Idioma: Inglés
Librería: BBB-Internetbuchantiquariat, Bremen, Alemania
EUR 39,30
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoSoftcover/Paperback, Condición: Sehr gut. 451 Seiten Zustand: sehr gut; Ungelesen; Fußschnitt leicht angeschmutzt; T-AA1357 9783642244117 Wenn das Buch einen Schutzumschlag hat, ist das ausdrücklich erwähnt. Rechnung mit ausgewiesener Mwst. Sprache: Englisch Gewicht in Gramm: 745.
Publicado por Morgan and Claypool Publishers, 2010
ISBN 10: 1608454924 ISBN 13: 9781608454921
Idioma: Inglés
Librería: SecondSale, Montgomery, IL, Estados Unidos de America
EUR 23,09
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoCondición: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 46,39
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 60,83
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: California Books, Miami, FL, Estados Unidos de America
EUR 58,97
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Ria Christie Collections, Uxbridge, Reino Unido
EUR 62,09
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. In.
Publicado por Springer Nature Switzerland, Springer International Publishing Jul 2010, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
EUR 32,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further ExplorationSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 104 pp. Englisch.
Publicado por Springer International Publishing AG, Cham, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: CitiRetail, Stevenage, Reino Unido
EUR 40,31
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Librería: Chiron Media, Wallingford, Reino Unido
EUR 59,04
Convertir monedaCantidad disponible: 10 disponibles
Añadir al carritoPaperback. Condición: New.
EUR 62,28
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoCondición: New. Decision-making in the face of uncertainty is a challenge in machine learning, and the multi-armed bandit model is a common framework to address it. This comprehensive introduction is an excellent reference for established researchers and a resource for gra.
Publicado por Springer-Verlag New York Inc, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Idioma: Inglés
Librería: Revaluation Books, Exeter, Reino Unido
EUR 83,12
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 2011 edition. 466 pages. 9.50x6.25x1.00 inches. In Stock.
Publicado por Cambridge University Press CUP, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 86,33
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 33,02
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing AG, Cham, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: Grand Eagle Retail, Fairfield, OH, Estados Unidos de America
EUR 42,10
Convertir monedaCantidad disponible: 1 disponibles
Añadir al carritoPaperback. Condición: new. Paperback. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 52,93
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
EUR 54,43
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Publicado por Springer International Publishing Jul 2010, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
EUR 32,09
Convertir monedaCantidad disponible: 2 disponibles
Añadir al carritoTaschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only partial feedback is given to the learner about the learner's predictions. Further, the predictions may have long term effects through influencing the future state of the controlled system. Thus, time plays a special role. The goal in reinforcement learning is to develop efficient learning algorithms, as well as to understand the algorithms' merits and limitations. Reinforcement learning is of great interest because of the large number of practical applications that it can be used to address, ranging from problems in artificial intelligence to operations research or control engineering. In this book, we focus on those algorithms of reinforcement learning that build on the powerful theory of dynamic programming. We give a fairly comprehensive catalog of learning problems, describe the core ideas, note a large number of state of the art algorithms, followed by the discussion of their theoretical properties and limitations. Table of Contents: Markov Decision Processes / Value Prediction Problems / Control / For Further Exploration 104 pp. Englisch.
Publicado por Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2010
ISBN 10: 303100423X ISBN 13: 9783031004230
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 31,03
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reinforcement learning is a learning paradigm concerned with learning to control a system so as to maximize a numerical performance measure that expresses a long-term objective. What distinguishes reinforcement learning from supervised learning is that only.
Librería: Majestic Books, Hounslow, Reino Unido
EUR 45,34
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand This item is printed on demand.
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 47,64
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.
Publicado por Springer Berlin Heidelberg, 2011
ISBN 10: 3642244114 ISBN 13: 9783642244117
Idioma: Inglés
Librería: moluna, Greven, Alemania
EUR 48,74
Convertir monedaCantidad disponible: Más de 20 disponibles
Añadir al carritoKartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fast track conference proceedings Unique visibility State of the art researchThis book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in Oc.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: Majestic Books, Hounslow, Reino Unido
EUR 85,85
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. Print on Demand.
Publicado por Cambridge University Press, 2020
ISBN 10: 1108486827 ISBN 13: 9781108486828
Idioma: Inglés
Librería: Biblios, Frankfurt am main, HESSE, Alemania
EUR 88,06
Convertir monedaCantidad disponible: 4 disponibles
Añadir al carritoCondición: New. PRINT ON DEMAND.