Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: My Dead Aunt's Books, Hyattsville, MD, Estados Unidos de America
EUR 28,08
Cantidad disponible: 1 disponibles
Añadir al carritopaperback. Condición: New. Unmarked trade paperback.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 99,53
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 101,85
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 108,72
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 104,17
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 113,93
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 143,33
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 134,97
Cantidad disponible: 2 disponibles
Añadir al carritoPaperback. Condición: Brand New. 312 pages. 9.00x6.00x0.40 inches. In Stock.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 069117055X ISBN 13: 9780691170558
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 104,19
Cantidad disponible: Más de 20 disponibles
Añadir al carritoPaperback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Librería: moluna, Greven, Alemania
EUR 104,28
Cantidad disponible: Más de 20 disponibles
Añadir al carritoCondición: New. Über den AutorIsroil A. Ikromov is professor of mathematics at Samarkand State University in Uzbekistan. Detlef Mueller is professor of mathematics at the University of Kiel in Germany.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 149,94
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
EUR 169,73
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
EUR 170,62
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: As New. Unread book in perfect condition.
Idioma: Inglés
Publicado por Princeton University Press 2016-06-07, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Chiron Media, Wallingford, Reino Unido
EUR 184,43
Cantidad disponible: 3 disponibles
Añadir al carritoHardcover. Condición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: moluna, Greven, Alemania
EUR 152,44
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Majestic Books, Hounslow, Reino Unido
EUR 204,79
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 312.
Idioma: Inglés
Publicado por Princeton University Press, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Books Puddle, New York, NY, Estados Unidos de America
EUR 214,24
Cantidad disponible: 3 disponibles
Añadir al carritoCondición: New. pp. 312.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Rarewaves USA, OSWEGO, IL, Estados Unidos de America
EUR 218,70
Cantidad disponible: 10 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Rarewaves.com USA, London, LONDO, Reino Unido
EUR 220,07
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Librería: Revaluation Books, Exeter, Reino Unido
EUR 219,61
Cantidad disponible: 2 disponibles
Añadir al carritoHardcover. Condición: Brand New. 312 pages. 9.50x6.00x0.50 inches. In Stock.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Rarewaves USA United, OSWEGO, IL, Estados Unidos de America
EUR 222,13
Cantidad disponible: 10 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.
Idioma: Inglés
Publicado por Princeton University Press, US, 2016
ISBN 10: 0691170541 ISBN 13: 9780691170541
Librería: Rarewaves.com UK, London, Reino Unido
EUR 209,29
Cantidad disponible: 2 disponibles
Añadir al carritoHardback. Condición: New. This is the first book to present a complete characterization of Stein-Tomas type Fourier restriction estimates for large classes of smooth hypersurfaces in three dimensions, including all real-analytic hypersurfaces. The range of Lebesgue spaces for which these estimates are valid is described in terms of Newton polyhedra associated to the given surface. Isroil Ikromov and Detlef Muller begin with Elias M. Stein's concept of Fourier restriction and some relations between the decay of the Fourier transform of the surface measure and Stein-Tomas type restriction estimates. Varchenko's ideas relating Fourier decay to associated Newton polyhedra are briefly explained, particularly the concept of adapted coordinates and the notion of height. It turns out that these classical tools essentially suffice already to treat the case where there exist linear adapted coordinates, and thus Ikromov and Muller concentrate on the remaining case. Here the notion of r-height is introduced, which proves to be the right new concept.They then describe decomposition techniques and related stopping time algorithms that allow to partition the given surface into various pieces, which can eventually be handled by means of oscillatory integral estimates. Different interpolation techniques are presented and used, from complex to more recent real methods by Bak and Seeger. Fourier restriction plays an important role in several fields, in particular in real and harmonic analysis, number theory, and PDEs. This book will interest graduate students and researchers working in such fields.