Data Science: The Hard Parts
Daniel Vaughan
Vendido por Wegmann1855, Zwiesel, Alemania
Vendedor de AbeBooks desde 2 de junio de 2022
Nuevos - Encuadernación de tapa blanda
Condición: Nuevo
Cantidad disponible: 2 disponibles
Añadir al carritoVendido por Wegmann1855, Zwiesel, Alemania
Vendedor de AbeBooks desde 2 de junio de 2022
Condición: Nuevo
Cantidad disponible: 2 disponibles
Añadir al carritoNeuware -This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the 'big themes' of the discipline--machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.
N° de ref. del artículo 9781098146474
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "big themes" of the discipline--machine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.
Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.
With this book, you will:
Daniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).
"Sobre este título" puede pertenecer a otra edición de este libro.
Ver la página web de la librería