Bayesian Computation with R
Albert, Jim
Vendido por Chiron Media, Wallingford, Reino Unido
Vendedor de AbeBooks desde 2 de agosto de 2010
Nuevos - Encuadernación de tapa blanda
Condición: Nuevo
Cantidad disponible: 10 disponibles
Añadir al carritoVendido por Chiron Media, Wallingford, Reino Unido
Vendedor de AbeBooks desde 2 de agosto de 2010
Condición: Nuevo
Cantidad disponible: 10 disponibles
Añadir al carritoN° de ref. del artículo 6666-IUK-9780387922973
There has been a dramatic growth in the development and application of Bayesian inferential methods. Some of this growth is due to the availability of powerful simulation-based algorithms to summarize posterior distributions. There has been also a growing interest in the use of the system R for statistical analyses. R's open source nature, free availability, and large number of contributor packages have made R the software of choice for many statisticians in education and industry.
Bayesian Computation with R introduces Bayesian modeling by the use of computation using the R language. The early chapters present the basic tenets of Bayesian thinking by use of familiar one and two-parameter inferential problems. Bayesian computational methods such as Laplace's method, rejection sampling, and the SIR algorithm are illustrated in the context of a random effects model. The construction and implementation of Markov Chain Monte Carlo (MCMC) methods is introduced. These simulation-based algorithms are implemented for a variety of Bayesian applications such as normal and binary response regression, hierarchical modeling, order-restricted inference, and robust modeling. Algorithms written in R are used to develop Bayesian tests and assess Bayesian models by use of the posterior predictive distribution. The use of R to interface with WinBUGS, a popular MCMC computing language, is described with several illustrative examples.
This book is a suitable companion book for an introductory course on Bayesian methods and is valuable to the statistical practitioner who wishes to learn more about the R language and Bayesian methodology. The LearnBayes package, written by the author and available from the CRAN website, contains all of the R functions described in the book.
The second edition contains several new topics such as the use of mixtures of conjugate priors and the use of Zellner's g priors to choose between models in linear regression.There are more illustrations of the construction of informative prior distributions, such as the use of conditional means priors and multivariate normal priors in binary regressions. The new edition contains changes in the R code illustrations according to the latest edition of the LearnBayes package.
Jim Albert is Professor of Statistics at Bowling Green State University. He is Fellow of the American Statistical Association and is past editor of The American Statistician. His books include Ordinal Data Modeling (with Val Johnson), Workshop Statistics: Discovery with Data, A Bayesian Approach (with Allan Rossman), and Bayesian Computation using Minitab.
"Sobre este título" puede pertenecer a otra edición de este libro.
Ver la página web de la librería
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
| Cantidad del pedido | De 14 a 21 días hábiles | De 14 a 21 días hábiles |
|---|---|---|
| Primer artículo | EUR 17.28 | EUR 17.28 |
Los plazos de entrega los establecen los vendedores y varían según el transportista y la ubicación. Los pedidos que pasan por la aduana pueden sufrir retrasos y los compradores son responsables de los aranceles o tarifas asociadas. Los vendedores pueden ponerse en contacto con usted en relación con cargos adicionales para cubrir cualquier aumento en los costes de envío de los artículos.