Librería:
AHA-BUCH GmbH, Einbeck, Alemania
Calificación del vendedor: 5 de 5 estrellas
Vendedor de AbeBooks desde 14 de agosto de 2006
Neuware - Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. N° de ref. del artículo 9781786305763
Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field.
Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences.
Acerca del autor:
Edwin Diday is Emeritus Professor at Paris-Dauphine University-PSL. He helped to introduce the symbolic data analysis paradigm and the dynamic clustering method (opening the path to local models), as well as pyramidal clustering for spatial representation of overlapping clusters.
Rong Guan is Associate Professor at the School of Statistics and Mathematics, Central University of Finance and Economics, Beijing. Her research covers complex and symbolic data analysis and financial distress diagnosis.
Gilbert Saporta is Emeritus Professor at Conservatoire National des Arts et Métiers, France. His current research focuses on functional data analysis and clusterwise and sparse methods. He is Honorary President of the French Statistical Society.
Huiwen Wang is Professor at the School of Economics and Management, Beihang University, Beijing. Her research covers dimension reduction, PLS regression, symbolic data analysis, compositional data analysis, functional data analysis and statistical modeling methods for mixed data.
Título: Advances in Data Science : Symbolic, Complex...
Editorial: Wiley Feb 2020
Año de publicación: 2020
Encuadernación: Buch
Condición: Neu
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 38712432-n
Cantidad disponible: 8 disponibles
Librería: INDOO, Avenel, NJ, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 9781786305763
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 38712432
Cantidad disponible: 8 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 38712432
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Hardcover. Condición: new. Hardcover. Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9781786305763
Cantidad disponible: 1 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 38712432-n
Cantidad disponible: Más de 20 disponibles
Librería: THE SAINT BOOKSTORE, Southport, Reino Unido
Hardback. Condición: New. New copy - Usually dispatched within 4 working days. Nº de ref. del artículo: B9781786305763
Cantidad disponible: Más de 20 disponibles
Librería: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda
Condición: New. 2020. 1st Edition. Hardback. . . . . . Nº de ref. del artículo: V9781786305763
Cantidad disponible: 15 disponibles
Librería: Ubiquity Trade, Miami, FL, Estados Unidos de America
Condición: New. Brand new! Please provide a physical shipping address. Nº de ref. del artículo: 9781786305763
Cantidad disponible: Más de 20 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 258 | Sprache: Englisch | Produktart: Bücher | Data science unifies statistics, data analysis and machine learning to achieve a better understanding of the masses of data which are produced today, and to improve prediction. Special kinds of data (symbolic, network, complex, compositional) are increasingly frequent in data science. These data require specific methodologies, but there is a lack of reference work in this field. Advances in Data Science fills this gap. It presents a collection of up-to-date contributions by eminent scholars following two international workshops held in Beijing and Paris. The 10 chapters are organized into four parts: Symbolic Data, Complex Data, Network Data and Clustering. They include fundamental contributions, as well as applications to several domains, including business and the social sciences. Nº de ref. del artículo: 35969747/2
Cantidad disponible: 1 disponibles