Artículos relacionados a Knowledge Discovery from Multi-Sourced Data (SpringerBriefs...

Knowledge Discovery from Multi-Sourced Data (SpringerBriefs in Computer Science) - Tapa blanda

 
9789811918780: Knowledge Discovery from Multi-Sourced Data (SpringerBriefs in Computer Science)

Sinopsis

This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.
 
Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to "label" or tell which data source is more reliable. Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.
 
At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Chen Ye is currently an Associate Researcher at the School of Computer Science and Technology, Hangzhou Dianzi University, China. She received the Ph.D. degree in Computer Software and Theory from Harbin Institute of Technology, China. Her current research interests include data repairing, truth discovery, and crowdsourcing. She has won the ACM SIGMOD China Doctoral Dissertation Award in 2020.

Hongzhi Wang is a Professor and Doctoral Supervisor at the School of Computer Science and Technology, Harbin Institute of Technology, China. His research interests include big data management and analysis, data quality, graph data management, and web data management. He has published more than 150 papers, and he is the Primary Investigator of more than 10 projects including three NSFC projects, and co-PI of 973, 863, and NSFC key projects. He was awarded as Microsoft fellowship, China Excellent Database Engineer, and IBM Ph.D. fellowship.

Guojun Dai is now working in the School of Computer Science and Technology of Hangzhou Dianzi University, as the Head of the National Brain-Computer Collaborative Intelligent Technology International Joint Research Center, the director of the Institute of Computer Application Technology. His research interests include Internet of Things, industrial big data, network collaborative manufacturing, edge computing, brain-computer interface, cognitive computing, artificial intelligence. He has published over 50 research papers in top-quality international conferences and journals, particularly, INFOCOM, IEEE Transactions on Industrial Informatics, and IEEE Transactions on Mobile Computing.

De la contraportada


"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Zustand: Hervorragend | Seiten:...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 4,02 gastos de envío desde Reino Unido a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Knowledge Discovery from Multi-Sourced Data (SpringerBriefs...

Imagen de archivo

Chen Ye, Guojun Dai, Hongzhi Wang
Publicado por Springer Nature Singapore, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Antiguo o usado Tapa blanda

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Hervorragend. Zustand: Hervorragend | Seiten: 96 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 38952132/1

Contactar al vendedor

Comprar usado

EUR 39,79
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Chen Ye
Publicado por Springer Verlag, Singapore, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo PAP

Librería: PBShop.store UK, Fairford, GLOS, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

PAP. Condición: New. New Book. Shipped from UK. Established seller since 2000. Nº de ref. del artículo: S0-9789811918780

Contactar al vendedor

Comprar nuevo

EUR 56,52
Convertir moneda
Gastos de envío: EUR 4,02
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen del vendedor

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable. Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. 96 pp. Englisch. Nº de ref. del artículo: 9789811918780

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Ye, Chen (Author)/ Wang, Hongzhi (Author)/ Dai, Guojun (Author)
Publicado por Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Paperback
Impresión bajo demanda

Librería: Revaluation Books, Exeter, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Brand New. 95 pages. 9.25x6.10x0.28 inches. In Stock. This item is printed on demand. Nº de ref. del artículo: __9811918783

Contactar al vendedor

Comprar nuevo

EUR 53,48
Convertir moneda
Gastos de envío: EUR 11,54
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Publicado por Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9789811918780_new

Contactar al vendedor

Comprar nuevo

EUR 60,41
Convertir moneda
Gastos de envío: EUR 5,18
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ye, Chen|Wang, Hongzhi|Dai, Guojun
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: . Nº de ref. del artículo: 571810609

Contactar al vendedor

Comprar nuevo

EUR 48,37
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Data, even describing the same object or event, can come from a variety of sources such as crowd workers and social media users. However, noisy pieces of data or information are unavoidable. Facing the daunting scale of data, it is unrealistic to expect humans to 'label' or tell which data source is more reliable.Hence, it is crucial to identify trustworthy information from multiple noisy information sources, referring to the task of knowledge discovery.At present, the knowledge discovery research for multi-sourced data mainly faces two challenges. On the structural level, it is essential to consider the different characteristics of data composition and application scenarios and define the knowledge discovery problem on different occasions. On the algorithm level, the knowledge discovery task needs to consider different levels of information conflicts and design efficient algorithms to mine more valuable information using multiple clues. Existing knowledge discovery methods have defects on both the structural level and the algorithm level, making the knowledge discovery problem far from totally solved. Nº de ref. del artículo: 9789811918780

Contactar al vendedor

Comprar nuevo

EUR 56,98
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Ye, Chen; Wang, Hongzhi; Dai, Guojun
Publicado por Springer, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9789811918780

Contactar al vendedor

Comprar nuevo

EUR 65,44
Convertir moneda
Gastos de envío: EUR 6,87
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Ye, Chen
Publicado por Springer 2022-06, 2022
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo PF

Librería: Chiron Media, Wallingford, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9789811918780

Contactar al vendedor

Comprar nuevo

EUR 56,20
Convertir moneda
Gastos de envío: EUR 17,30
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 10 disponibles

Añadir al carrito

Imagen del vendedor

Chen Ye
ISBN 10: 9811918783 ISBN 13: 9789811918780
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -This book addresses several knowledge discovery problems on multi-sourced data where the theories, techniques, and methods in data cleaning, data mining, and natural language processing are synthetically used. This book mainly focuses on three data models: the multi-sourced isomorphic data, the multi-sourced heterogeneous data, and the text data. On the basis of three data models, this book studies the knowledge discovery problems including truth discovery and fact discovery on multi-sourced data from four important properties: relevance, inconsistency, sparseness, and heterogeneity, which is useful for specialists as well as graduate students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. Nº de ref. del artículo: 9789811918780

Contactar al vendedor

Comprar nuevo

EUR 53,49
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 1 copia(s) de este libro

Ver todos los resultados de su búsqueda