Artículos relacionados a Advanced Image Processing Techniques for Land Feature...

Advanced Image Processing Techniques for Land Feature Classification: Classification of Semi-Urban Land Use/ Land Cover Features in High Resolution RS Data - Tapa blanda

 
9783847324225: Advanced Image Processing Techniques for Land Feature Classification: Classification of Semi-Urban Land Use/ Land Cover Features in High Resolution RS Data

Sinopsis

Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.

Biografía del autor

Dr. Ashok Kumar received the BE and ME degree in Electronics and Commn. and Ph.D by VTU, India, for his work on Advanced Image Processing Techniques and Algorithms for Classification of High Resolution RS Data. His subjects of interest are Image Processing, Communication Engg., Data Mining and Remote Sensing. He is in teaching for over 22 years.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 28,91 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 23,00 gastos de envío desde Alemania a Estados Unidos de America

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Advanced Image Processing Techniques for Land Feature...

Imagen del vendedor

Ashok Kumar T.
ISBN 10: 3847324225 ISBN 13: 9783847324225
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect. 260 pp. Englisch. Nº de ref. del artículo: 9783847324225

Contactar al vendedor

Comprar nuevo

EUR 79,00
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Ashok Kumar T.
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847324225 ISBN 13: 9783847324225
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Kumar T. AshokDr. Ashok Kumar received the BE and ME degree in Electronics and Commn. and Ph.D by VTU, India, for his work on Advanced Image Processing Techniques and Algorithms for Classification of High Resolution RS Data. His subj. Nº de ref. del artículo: 5510111

Contactar al vendedor

Comprar nuevo

EUR 63,42
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Ashok Kumar T.
ISBN 10: 3847324225 ISBN 13: 9783847324225
Nuevo Taschenbuch
Impresión bajo demanda

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect.Books on Demand GmbH, Überseering 33, 22297 Hamburg 260 pp. Englisch. Nº de ref. del artículo: 9783847324225

Contactar al vendedor

Comprar nuevo

EUR 79,00
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Ashok Kumar T.
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847324225 ISBN 13: 9783847324225
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Since the traditional hard classifiers are parametric in nature and expect the data to follow a Gaussian distribution, they perform poorly on high resolution satellite images in which land features and classes exhibit extensive overlapping in spectral space. Further, integrating ancillary data like digital elevation model, slope, texture, contextual information, etc. into spectral bands is difficult in such classifiers, because ancillary data results in a non-Gaussian distribution of the resultant data. Hence, generating a satisfactory classified image from the higher spectral and spatial, and high-dimensional data is one of the present-day challenges in RS data analysis. This thesis is aimed at developing an advanced classification strategy by integrating a non-parametric J4.8 decision tree classification algorithm and a texture based image classification approach on a panchromatic sharpened IRS P-6 LISS-IV (2.5m) imagery. Attempt has also been made to provide answers through empirical studies to some of the dubious issues and contradictory findings in RS image classification with regard to image evaluation metrics, statistical feature selection criteria and border-effect. Nº de ref. del artículo: 9783847324225

Contactar al vendedor

Comprar nuevo

EUR 79,00
Convertir moneda
Gastos de envío: EUR 62,03
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Kumar T., Ashok
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847324225 ISBN 13: 9783847324225
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA78738473242256

Contactar al vendedor

Comprar usado

EUR 151,28
Convertir moneda
Gastos de envío: EUR 28,91
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito