Artículos relacionados a Hybrid recommender for multimedia item recommendation:...

Hybrid recommender for multimedia item recommendation: Development of a hybrid content-collaborative recommender system for multimedia item recommendation - Tapa blanda

 
9783847304104: Hybrid recommender for multimedia item recommendation: Development of a hybrid content-collaborative recommender system for multimedia item recommendation

Sinopsis

User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method - adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Matevž Kunaver, PhD researcher at the University of Ljubljana(UL), research interests cover recommender systems and user personalization. Andrej Košir, PhD, professor at UL, research areas include operational research and user personalization. Jurij Tasič, PhD, professor of system theory and computing at UL.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Bueno
Gut/Very good: Buch bzw. Schutzumschlag...
Ver este artículo

EUR 6,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 19,49 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Hybrid recommender for multimedia item recommendation:...

Imagen de archivo

Kunaver, Matev?, Ko?ir, Andrej
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847304100 ISBN 13: 9783847304104
Antiguo o usado Tapa blanda

Librería: medimops, Berlin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Nº de ref. del artículo: M03847304100-V

Contactar al vendedor

Comprar usado

EUR 3,36
Convertir moneda
Gastos de envío: EUR 6,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Matev Kunaver|Andrej Koir|Jurij F. Tasic
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuevo Tapa blanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 5508746

Contactar al vendedor

Comprar nuevo

EUR 48,50
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Matev¿ Kunaver
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency. 136 pp. Englisch. Nº de ref. del artículo: 9783847304104

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Matev¿ Kunaver
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuevo Taschenbuch
Impresión bajo demanda

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency. Nº de ref. del artículo: 9783847304104

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Matev¿ Kunaver
ISBN 10: 3847304100 ISBN 13: 9783847304104
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -User modeling is a procedure used to filter available content in order to present the user with a selection of interesting items. Systems performing this procedure are known as recommenders. This work presents the development of two different recommenders that were evaluated using two very different datasets. The recommenders were evaluated using the F-measure metric, which frequently used in the field of user modeling. During the development of our first system we focused on collaborative recommenders that are based on the nearest neighbor search. We tested two methods for nearest neighbor selection and two methods for calculating predicted ratings. Based on our results we developed a new method ¿ adjusted weighted sum. The first recommender system performed efficiently, but required a lot of time to create a list of recommendations for a single user. In order to correct this we developed a new, hybrid recommender. We expanded existing user profiles by adding genre preferences that were used to select nearest neighbors. The new system worked noticeably faster while still maintaining a high level of efficiency.Books on Demand GmbH, Überseering 33, 22297 Hamburg 136 pp. Englisch. Nº de ref. del artículo: 9783847304104

Contactar al vendedor

Comprar nuevo

EUR 59,00
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Kunaver, Matev, Koir, Andrej, Tasic, Jurij F.
Publicado por LAP LAMBERT Academic Publishing, 2011
ISBN 10: 3847304100 ISBN 13: 9783847304104
Antiguo o usado Paperback

Librería: Mispah books, Redhill, SURRE, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA79638473041006

Contactar al vendedor

Comprar usado

EUR 120,48
Convertir moneda
Gastos de envío: EUR 28,95
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito