Document from the year 2016 in the subject Computer Science - Internet, New Technologies, , language: English, abstract: Due to the rapid evolution of Internet as well as services over the Internet, including high bandwidth consuming applications like audio and video streaming, it has become need of the day to enhance the Internet infrastructure for bandwidth efficiency. One of the present day biggest challenges of networks is the audio/video transmission in real time. Developed by the Internet Engineering Task Force, Multiprotocol label Switching (MPLS) allows networks to offer several services on the single network architecture with improved forwarding speed of routers by solving the problem of longest prefix match in IP networks. Internet Protocol datagram encapsulates payload received from above layer and adds to its own header information. Thus each protocol layer adds its own header with the information related to the layer. This is a disadvantage of a bigger packet header size such as IPv4/UDP/RTP header of 40 bytes compared to the payload size which leads to excessive overhead in case of real-time multimedia applications. Bandwidth can be conserved by reducing the amount of redundant IP header transmitted with every packet for the same packet stream through header compression techniques. The header compression mechanisms have several short comings such as a problem that they work on hop-by-hop basis. The packet is compressed by the compressor and decompressed by the decompressor and for header compression to work; these are connected directly not through any intermediate node, not even a layer 3 device such as a router. In addition to this, there is a limit in the number of compressed flows that a router can take. The objective of this book is to propose header compression technology which can be implemented over MPLS and used as a bandwidth conserving technology. This will solve the problems of hop-by-hop compression/decompression as the compression of p
"Sinopsis" puede pertenecer a otra edición de este libro.
Document from the year 2016 in the subject Computer Science - Internet, New Technologies, , language: English, abstract: Due to the rapid evolution of Internet as well as services over the Internet, including high bandwidth consuming applications like audio and video streaming, it has become need of the day to enhance the Internet infrastructure for bandwidth efficiency. One of the present day biggest challenges of networks is the audio/video transmission in real time. Developed by the Internet Engineering Task Force, Multiprotocol label Switching (MPLS) allows networks to offer several services on the single network architecture with improved forwarding speed of routers by solving the problem of longest prefix match in IP networks. Internet Protocol datagram encapsulates payload received from above layer and adds to its own header information. Thus each protocol layer adds its own header with the information related to the layer. This is a disadvantage of a bigger packet header size such as IPv4/UDP/RTP header of 40 bytes compared to the payload size which leads to excessive overhead in case of real-time multimedia applications. Bandwidth can be conserved by reducing the amount of redundant IP header transmitted with every packet for the same packet stream through header compression techniques. The header compression mechanisms have several short comings such as a problem that they work on hop-by-hop basis. The packet is compressed by the compressor and decompressed by the decompressor and for header compression to work; these are connected directly not through any intermediate node, not even a layer 3 device such as a router. In addition to this, there is a limit in the number of compressed flows that a router can take. The objective of this book is to propose header compression technology which can be implemented over MPLS and used as a bandwidth conserving technology. This will solve the problems of hop-by-hop compression/decompression as the compression of p
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Buchpark, Trebbin, Alemania
Condición: Hervorragend. Zustand: Hervorragend | Seiten: 92 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 30658995/1
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Document from the year 2016 in the subject Computer Science - Internet, New Technologies, , language: English, abstract: Due to the rapid evolution of Internet as well as services over the Internet, including high bandwidth consuming applications like audio and video streaming, it has become need of the day to enhance the Internet infrastructure for bandwidth efficiency. One of the present day biggest challenges of networks is the audio/video transmission in real time. Developed by the Internet Engineering Task Force, Multiprotocol label Switching (MPLS) allows networks to offer several services on the single network architecture with improved forwarding speed of routers by solving the problem of longest prefix match in IP networks. Internet Protocol datagram encapsulates payload received from above layer and adds to its own header information. Thus each protocol layer adds its own header with the information related to the layer. This is a disadvantage of a bigger packet header size such as IPv4/UDP/RTP header of 40 bytes compared to the payload size which leads to excessive overhead in case of real-time multimedia applications. Bandwidth can be conserved by reducing the amount of redundant IP header transmitted with every packet for the same packet stream through header compression techniques. The header compression mechanisms have several short comings such as a problem that they work on hop-by-hop basis. The packet is compressed by the compressor and decompressed by the decompressor and for header compression to work; these are connected directly not through any intermediate node, not even a layer 3 device such as a router. In addition to this, there is a limit in the number of compressed flows that a router can take. The objective of this book is to propose header compression technology which can be implemented over MPLS and used as a bandwidth conserving technology. This will solve the problems of hop-by-hop compression/decompression as the compression of packets is not hop-by-hop rather the compression is per Label Switched Path (LSP) of MPLS network from ingress to egress Label Switched Routers. This will also handle packet reordering in addition to allowing numerous flows at the same time. The current work in the area, both standardized as well as ongoing research has been discussed in detail and also the problems that are yet to be addressed are examined. This approach also increases the bandwidth efficiency as well as processing scalability with respect to the maximum number of simultaneous flows. 92 pp. Englisch. Nº de ref. del artículo: 9783668565111
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Document from the year 2016 in the subject Computer Science - Internet, New Technologies, , language: English, abstract: Due to the rapid evolution of Internet as well as services over the Internet, including high bandwidth consuming applications like audio and video streaming, it has become need of the day to enhance the Internet infrastructure for bandwidth efficiency. One of the present day biggest challenges of networks is the audio/video transmission in real time. Developed by the Internet Engineering Task Force, Multiprotocol label Switching (MPLS) allows networks to offer several services on the single network architecture with improved forwarding speed of routers by solving the problem of longest prefix match in IP networks. Internet Protocol datagram encapsulates payload received from above layer and adds to its own header information. Thus each protocol layer adds its own header with the information related to the layer. This is a disadvantage of a bigger packet header size such as IPv4/UDP/RTP header of 40 bytes compared to the payload size which leads to excessive overhead in case of real-time multimedia applications. Bandwidth can be conserved by reducing the amount of redundant IP header transmitted with every packet for the same packet stream through header compression techniques. The header compression mechanisms have several short comings such as a problem that they work on hop-by-hop basis. The packet is compressed by the compressor and decompressed by the decompressor and for header compression to work; these are connected directly not through any intermediate node, not even a layer 3 device such as a router. In addition to this, there is a limit in the number of compressed flows that a router can take. The objective of this book is to propose header compression technology which can be implemented over MPLS and used as a bandwidth conserving technology. This will solve the problems of hop-by-hop compression/decompression as the compression of packets is not hop-by-hop rather the compression is per Label Switched Path (LSP) of MPLS network from ingress to egress Label Switched Routers. This will also handle packet reordering in addition to allowing numerous flows at the same time. The current work in the area, both standardized as well as ongoing research has been discussed in detail and also the problems that are yet to be addressed are examined. This approach also increases the bandwidth efficiency as well as processing scalability with respect to the maximum number of simultaneous flows. Nº de ref. del artículo: 9783668565111
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783668565111
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Document from the year 2016 in the subject Computer Science - Internet, New Technologies, , language: English, abstract: Due to the rapid evolution of Internet as well as services over the Internet, including high bandwidth consuming applications like audio and video streaming, it has become need of the day to enhance the Internet infrastructure for bandwidth efficiency. One of the present day biggest challenges of networks is the audio/video transmission in real time. Developed by the Internet Engineering Task Force, Multiprotocol label Switching (MPLS) allows networks to offer several services on the single network architecture with improved forwarding speed of routers by solving the problem of longest prefix match in IP networks. Internet Protocol datagram encapsulates payload received from above layer and adds to its own header information. Thus each protocol layer adds its own header with the information related to the layer. This is a disadvantage of a bigger packet header size such as IPv4/UDP/RTP header of 40 bytes compared to the payload size which leads to excessive overhead in case of real-time multimedia applications. Bandwidth can be conserved by reducing the amount of redundant IP header transmitted with every packet for the same packet stream through header compression techniques. The header compression mechanisms have several short comings such as a problem that they work on hop-by-hop basis. The packet is compressed by the compressor and decompressed by the decompressor and for header compression to work; these are connected directly not through any intermediate node, not even a layer 3 device such as a router. In addition to this, there is a limit in the number of compressed flows that a router can take. The objective of this book is to propose header compression technology which can be implemented over MPLS and used as a bandwidth conserving technology. This will solve the problems of hop-by-hop compression/decompression as the compression of packets is not hop-by-hop rather the compression is per Label Switched Path (LSP) of MPLS network from ingress to egress Label Switched Routers. This will also handle packet reordering in addition to allowing numerous flows at the same time. The current work in the area, both standardized as well as ongoing research has been discussed in detail and also the problems that are yet to be addressed are examined. This approach also increases the bandwidth efficiency as well as processing scalability with respect to the maximum number of simultaneous flows.Books on Demand GmbH, Überseering 33, 22297 Hamburg 92 pp. Englisch. Nº de ref. del artículo: 9783668565111
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Robust Header Compression (RoHC) over Multiprotocol Label Switching (MPLS) Networks | Mohammad Ahsan Chishti (u. a.) | Taschenbuch | 92 S. | Englisch | 2017 | GRIN Verlag | EAN 9783668565111 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Nº de ref. del artículo: 110661512
Cantidad disponible: 5 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
paperback. Condición: New. New. book. Nº de ref. del artículo: ERICA82336685651126
Cantidad disponible: 1 disponibles