In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author’s work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.
"Sinopsis" puede pertenecer a otra edición de este libro.
In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Scissortail, Oklahoma City, OK, Estados Unidos de America
Condición: good. This is a pre-loved book that shows moderate signs of wear from previous reading. You may notice creases, edge wear, or a cracked spine, but it remains in solid, readable condition.Please note:-May include library or rental stickers, stamps, or markings.-Supplemental materials e.g., CDs, access codes, inserts are not guaranteed.-Box sets may not come with the original outer box. If it does, the box will not be in perfect condition. -Sourced from donation centers; authenticity not verified with publisher. Your satisfaction is our top priority! If you have any questions or concerns about your order, please don't hesitate to reach out. Thank you for shopping with us and supporting small businessâ"happy reading! Nº de ref. del artículo: STM.5E5
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020237213
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642821202_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
Paperback. Condición: New. Nº de ref. del artículo: 6666-IUK-9783642821202
Cantidad disponible: 10 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In recent years much attention has been given to the development of auto matic systems of planning, design and control in various branches of the national economy. Quality of decisions is an issue which has come to the forefront, increasing the significance of optimization algorithms in math ematical software packages for al,ltomatic systems of various levels and pur poses. Methods for minimizing functions with discontinuous gradients are gaining in importance and the ~xperts in the computational methods of mathematical programming tend to agree that progress in the development of algorithms for minimizing nonsmooth functions is the key to the con struction of efficient techniques for solving large scale problems. This monograph summarizes to a certain extent fifteen years of the author's work on developing generalized gradient methods for nonsmooth minimization. This work started in the department of economic cybernetics of the Institute of Cybernetics of the Ukrainian Academy of Sciences under the supervision of V.S. Mikhalevich, a member of the Ukrainian Academy of Sciences, in connection with the need for solutions to important, practical problems of optimal planning and design. In Chap. I we describe basic classes of nonsmooth functions that are dif ferentiable almost everywhere, and analyze various ways of defining generalized gradient sets. In Chap. 2 we study in detail various versions of the su bgradient method, show their relation to the methods of Fejer-type approximations and briefly present the fundamentals of e-subgradient methods. 176 pp. Englisch. Nº de ref. del artículo: 9783642821202
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 176. Nº de ref. del artículo: 2648020006
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 5071572
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 176 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 44762617
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 176. Nº de ref. del artículo: 1848020012
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 172 pages. 9.25x6.10x0.39 inches. In Stock. Nº de ref. del artículo: x-3642821200
Cantidad disponible: 2 disponibles