Artículos relacionados a Learning to Rank for Information Retrieval

Learning to Rank for Information Retrieval - Tapa blanda

 
9783642441240: Learning to Rank for Information Retrieval

Sinopsis

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.

The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”.

Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.

This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.

"Sinopsis" puede pertenecer a otra edición de este libro.

Acerca del autor

Tie-Yan Liu is a lead researcher at Microsoft Research Asia. He leads a team working on learning to rank for information retrieval, and graph-based machine learning.   So far, he has more than 70 quality papers published in referred conferences and journals, including SIGIR(9), WWW(3), ICML(3), KDD, NIPS, ACM MM, IEEE TKDE, SIGKDD Explorations, etc.   He has about 40 filed US / international patents or pending applications on learning to rank, general Web search, and multimedia signal processing.   He is the co-author of the Best Student Paper for SIGIR 2008, and the Most Cited Paper for the Journal of Visual Communication and Image Representation (2004~2006). He is an Area Chair of SIGIR 2009, a Senior Program Committee member of SIGIR 2008, and Program Committee members for many other international conferences, such as WWW, ICML, ACL, and ICIP. He is the co-chair of the SIGIR workshop on learning to rank for information retrieval (LR4IR) in 2007 and 2008. He has been on the Editorial Board of the Information Retrieval Journal (IRJ) since 2008, and is the guest editor of the special issue on learning to rank of IRJ.   He has given tutorials on learning to rank at WWW 2008 and SIGIR 2008. Prior to joining Microsoft, he obtained his Ph.D. from Tsinghua University, where his research efforts were devoted to video content analysis.

De la contraportada

Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.

The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called "learning to rank".

Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches - these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.

This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Como Nuevo
Like New
Ver este artículo

EUR 28,62 gastos de envío desde Reino Unido a Estados Unidos de America

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 5,50 gastos de envío desde Italia a Estados Unidos de America

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783642142666: Learning to Rank for Information Retrieval

Edición Destacada

ISBN 10:  3642142664 ISBN 13:  9783642142666
Editorial: Springer, 2011
Tapa dura

Resultados de la búsqueda para Learning to Rank for Information Retrieval

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Brook Bookstore On Demand, Napoli, NA, Italia

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: new. Questo è un articolo print on demand. Nº de ref. del artículo: f6cc93cbf644ba240012d10d499d509f

Contactar al vendedor

Comprar nuevo

EUR 118,26
Convertir moneda
Gastos de envío: EUR 5,50
De Italia a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783642441240_new

Contactar al vendedor

Comprar nuevo

EUR 134,56
Convertir moneda
Gastos de envío: EUR 13,71
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda

Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020228034

Contactar al vendedor

Comprar nuevo

EUR 148,96
Convertir moneda
Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Tie-Yan Liu
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called 'learning to rank'.Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches - these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development. 304 pp. Englisch. Nº de ref. del artículo: 9783642441240

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 23,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Tie-Yan Liu
Publicado por Springer Berlin Heidelberg, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Only comprehensive overview of a key innovative technology for search engine developmentWritten by one of the leading authorities in this fieldCombines scientific theoretical soundness with broad development and application experiences. Nº de ref. del artículo: 11801056

Contactar al vendedor

Comprar nuevo

EUR 127,40
Convertir moneda
Gastos de envío: EUR 48,99
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783642441240

Contactar al vendedor

Comprar nuevo

EUR 183,38
Convertir moneda
Gastos de envío: GRATIS
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: 26357318260

Contactar al vendedor

Comprar nuevo

EUR 188,38
Convertir moneda
Gastos de envío: EUR 3,43
A Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Print on Demand. Nº de ref. del artículo: 356221355

Contactar al vendedor

Comprar nuevo

EUR 198,14
Convertir moneda
Gastos de envío: EUR 7,44
De Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Imagen del vendedor

Tie-Yan Liu
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people.The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called ¿learning to rank¿.Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches ¿ these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance.This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 304 pp. Englisch. Nº de ref. del artículo: 9783642441240

Contactar al vendedor

Comprar nuevo

EUR 149,79
Convertir moneda
Gastos de envío: EUR 60,00
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Liu, Tie-Yan
Publicado por Springer, 2014
ISBN 10: 3642441246 ISBN 13: 9783642441240
Nuevo Tapa blanda
Impresión bajo demanda

Librería: Biblios, Frankfurt am main, HESSE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. PRINT ON DEMAND. Nº de ref. del artículo: 18357318270

Contactar al vendedor

Comprar nuevo

EUR 200,94
Convertir moneda
Gastos de envío: EUR 9,95
De Alemania a Estados Unidos de America
Destinos, gastos y plazos de envío

Cantidad disponible: 4 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda