Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
"Sinopsis" puede pertenecer a otra edición de este libro.
Decision trees and decision rule systems are widely used in different applications
as algorithms for problem solving, as predictors, and as a way for
knowledge representation. Reducts play key role in the problem of attribute
(feature) selection. The aims of this book are (i) the consideration of the sets
of decision trees, rules and reducts; (ii) study of relationships among these
objects; (iii) design of algorithms for construction of trees, rules and reducts;
and (iv) obtaining bounds on their complexity. Applications for supervised
machine learning, discrete optimization, analysis of acyclic programs, fault
diagnosis, and pattern recognition are considered also. This is a mixture of
research monograph and lecture notes. It contains many unpublished results.
However, proofs are carefully selected to be understandable for students.
The results considered in this book can be useful for researchers in machine
learning, data mining and knowledge discovery, especially for those who are
working in rough set theory, test theory and logical analysis of data. The book
can be used in the creation of courses for graduate students.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020222761
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642269011_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Decision trees and decision rule systems are widely used in different applicationsas algorithms for problem solving, as predictors, and as a way forknowledge representation. Reducts play key role in the problem of attribute(feature) selection. The aims of this book are (i) the consideration of the setsof decision trees, rules and reducts; (ii) study of relationships among theseobjects; (iii) design of algorithms for construction of trees, rules and reducts;and (iv) obtaining bounds on their complexity. Applications for supervisedmachine learning, discrete optimization, analysis of acyclic programs, faultdiagnosis, and pattern recognition are considered also. This is a mixture ofresearch monograph and lecture notes. It contains many unpublished results.However, proofs are carefully selected to be understandable for students.The results considered in this book can be useful for researchers in machinelearning, data mining and knowledge discovery, especially for those who areworking in rough set theory, test theory and logical analysis of data. The bookcan be used in the creation of courses for graduate students. 196 pp. Englisch. Nº de ref. del artículo: 9783642269011
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A rough set approach to combinatorial machine learning Presents applications for supervised machine learning, discrete optimization, analysis of acyclic programs, fault diagnosis and pattern recognition Written by leading experts in the fiel. Nº de ref. del artículo: 5054945
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 196. Nº de ref. del artículo: 2697860443
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 196 89 Illus. Nº de ref. del artículo: 94536836
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 196. Nº de ref. del artículo: 1897860433
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 2011 edition. 196 pages. 9.25x6.10x0.45 inches. In Stock. Nº de ref. del artículo: x-364226901X
Cantidad disponible: 2 disponibles
Librería: preigu, Osnabrück, Alemania
Taschenbuch. Condición: Neu. Combinatorial Machine Learning | A Rough Set Approach | Beata Zielosko (u. a.) | Taschenbuch | xiv | Englisch | 2013 | Springer Spektrum | EAN 9783642269011 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Nº de ref. del artículo: 105706070
Cantidad disponible: 5 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Decision trees and decision rule systems are widely used in different applicationsas algorithms for problem solving, as predictors, and as a way forknowledge representation. Reducts play key role in the problem of attribute(feature) selection. The aims of this book are (i) the consideration of the setsof decision trees, rules and reducts; (ii) study of relationships among theseobjects; (iii) design of algorithms for construction of trees, rules and reducts;and (iv) obtaining bounds on their complexity. Applications for supervisedmachine learning, discrete optimization, analysis of acyclic programs, faultdiagnosis, and pattern recognition are considered also. This is a mixture ofresearch monograph and lecture notes. It contains many unpublished results.However, proofs are carefully selected to be understandable for students.The results considered in this book can be useful for researchers in machinelearning, data mining and knowledge discovery, especially for those who areworking in rough set theory, test theory and logical analysis of data. The bookcan be used in the creation of courses for graduate students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 196 pp. Englisch. Nº de ref. del artículo: 9783642269011
Cantidad disponible: 1 disponibles