Artículos relacionados a Fusion Methods for Unsupervised Learning Ensembles:...

Fusion Methods for Unsupervised Learning Ensembles: 322 (Studies in Computational Intelligence) - Tapa dura

 
9783642162046: Fusion Methods for Unsupervised Learning Ensembles: 322 (Studies in Computational Intelligence)

Sinopsis

The application of a "committee of experts" or ensemble learning to artificial neural networks that apply unsupervised learning techniques is widely considered to enhance the effectiveness of such networks greatly. This book examines the potential of the ensemble meta-algorithm by describing and testing a technique based on the combination of ensembles and statistical PCA that is able to determine the presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results. Its central contribution concerns an algorithm for the ensemble fusion of topology-preserving maps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms. The experimental results demonstrate that, in the majority of cases, the WeVoS algorithm outperforms earlier map-fusion methods and the simpler versions of the algorithm with which it is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

"Sinopsis" puede pertenecer a otra edición de este libro.

De la contraportada

The application of a committee of experts or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topologypreserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.

"Sobre este título" puede pertenecer a otra edición de este libro.

Comprar usado

Condición: Excelente
Zustand: Sehr gut | Seiten: 160...
Ver este artículo

EUR 14,90 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Comprar nuevo

Ver este artículo

EUR 9,85 gastos de envío desde Estados Unidos de America a España

Destinos, gastos y plazos de envío

Otras ediciones populares con el mismo título

9783642423284: Fusion Methods for Unsupervised Learning Ensembles: 322 (Studies in Computational Intelligence)

Edición Destacada

ISBN 10:  3642423280 ISBN 13:  9783642423284
Editorial: Springer, 2014
Tapa blanda

Resultados de la búsqueda para Fusion Methods for Unsupervised Learning Ensembles:...

Imagen de archivo

Bruno Baruque
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Antiguo o usado Tapa dura

Librería: Buchpark, Trebbin, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: Sehr gut. Zustand: Sehr gut | Seiten: 160 | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 9254906/12

Contactar al vendedor

Comprar usado

EUR 19,13
Convertir moneda
Gastos de envío: EUR 14,90
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Baruque
Publicado por Springer, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Antiguo o usado Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebundene Ausgabe. Condición: Gut. Gebraucht - Gut - ungelesen, gut mit Mängeln an Schnitt oder Umschlag durch Lager- oder Transportschaden,Buchrücken beschädigt, als Mängelexemplar gekennzeichnet Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 141 pp. Englisch. Nº de ref. del artículo: INF1000047392

Contactar al vendedor

Comprar usado

EUR 19,58
Convertir moneda
Gastos de envío: EUR 19,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Bruno Baruque Emilio Corchado
Publicado por Springer, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: Books Puddle, New York, NY, Estados Unidos de America

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 160. Nº de ref. del artículo: 262073679

Contactar al vendedor

Comprar nuevo

EUR 98,89
Convertir moneda
Gastos de envío: EUR 9,85
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Baruque Bruno Corchado Emilio
Publicado por Springer, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: Majestic Books, Hounslow, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. pp. 160 Illus. Nº de ref. del artículo: 6822800

Contactar al vendedor

Comprar nuevo

EUR 103,22
Convertir moneda
Gastos de envío: EUR 10,23
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Baruque
Publicado por Springer Berlin Heidelberg, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura
Impresión bajo demanda

Librería: moluna, Greven, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Gebunden. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Recent research in Fusion Methods for Unsupervised Learning Ensembles Examines the potential of the ensemble meta-algorithm Written by leading experts in the fieldRecent research in Fusion Methods for Unsupervised Learning EnsemblesExamines th. Nº de ref. del artículo: 5051075

Contactar al vendedor

Comprar nuevo

EUR 101,04
Convertir moneda
Gastos de envío: EUR 19,49
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Baruque, Bruno
Publicado por Springer, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: Ria Christie Collections, Uxbridge, Reino Unido

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. In. Nº de ref. del artículo: ria9783642162046_new

Contactar al vendedor

Comprar nuevo

EUR 116,28
Convertir moneda
Gastos de envío: EUR 5,19
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Baruque
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems. 160 pp. Englisch. Nº de ref. del artículo: 9783642162046

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Baruque
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The application of a 'committee of experts' or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems. Nº de ref. del artículo: 9783642162046

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Baruque, Bruno
Publicado por Springer, 2010
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783642162046

Contactar al vendedor

Comprar nuevo

EUR 125,25
Convertir moneda
Gastos de envío: EUR 6,85
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Bruno Baruque
ISBN 10: 3642162045 ISBN 13: 9783642162046
Nuevo Tapa dura

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Buch. Condición: Neu. Neuware -The application of a ¿committee of experts¿ or ensemble learning to artificial neural networksthat apply unsupervised learning techniques is widely considered to enhance the effectivenessof such networks greatly.This book examines the potential of the ensemble meta-algorithm by describing and testing atechnique based on the combination of ensembles and statistical PCA that is able to determinethe presence of outliers in high-dimensional data sets and to minimize outlier effects in the final results.Its central contribution concerns an algorithm for the ensemble fusion of topology-preservingmaps, referred to as Weighted Voting Superposition (WeVoS), which has been devised to improve data exploration by 2-D visualization over multi-dimensional data sets. This generic algorithm is applied in combination with several other models taken from the family of topology preserving maps, such as the SOM, ViSOM, SIM and Max-SIM. A range of quality measures for topology preserving maps that are proposed in the literature are used to validate and compare WeVoS with other algorithms.The experimental results demonstrate that, in the majority of cases, the WeVoS algorithmoutperforms earlier map-fusion methods and the simpler versions of the algorithm with whichit is compared. All the algorithms are tested in different artificial data sets and in several of the most common machine-learning data sets in order to corroborate their theoretical properties. Moreover, a real-life case-study taken from the food industry demonstrates the practical benefits of their application to more complex problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Nº de ref. del artículo: 9783642162046

Contactar al vendedor

Comprar nuevo

EUR 117,69
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Existen otras 2 copia(s) de este libro

Ver todos los resultados de su búsqueda