Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.
"Sinopsis" puede pertenecer a otra edición de este libro.
Dr. Kurt Marti is a full Professor of Engineering Mathematics at the „Federal Armed Forces University of Munich“. He is Chairman of the IFIP-Working Group 7.7 on “Stochastic Optimization” and has been Chairman of the GAMM-Special Interest Group “Applied Stochastics and Optimization”. Professor Marti has published several books, both in German and in English, and he is author of more than 160 papers in refereed journals.
Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insensitive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,79 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Many illustrations/several examples/applications to concrete problems from engineering and operations research, as e.g. quality engineering, robust design/many references to stochastic optimization, stochastic programming and its application to engineeri. Nº de ref. del artículo: 5048830
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783642098369_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations. 356 pp. Englisch. Nº de ref. del artículo: 9783642098369
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations. Nº de ref. del artículo: 9783642098369
Cantidad disponible: 1 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Optimization problems arising in practice involve random model parameters. For the computation of robust optimal solutions, i.e., optimal solutions being insenistive with respect to random parameter variations, appropriate deterministic substitute problems are needed. Based on the probability distribution of the random data, and using decision theoretical concepts, optimization problems under stochastic uncertainty are converted into appropriate deterministic substitute problems. Due to the occurring probabilities and expectations, approximative solution techniques must be applied. Several deterministic and stochastic approximation methods are provided: Taylor expansion methods, regression and response surface methods (RSM), probability inequalities, multiple linearization of survival/failure domains, discretization methods, convex approximation/deterministic descent directions/efficient points, stochastic approximation and gradient procedures, differentiation formulas for probabilities and expectations.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 356 pp. Englisch. Nº de ref. del artículo: 9783642098369
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 356 2nd Edition. Nº de ref. del artículo: 263060219
Cantidad disponible: 4 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783642098369
Cantidad disponible: 2 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 356 23 Illus. Nº de ref. del artículo: 5836324
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 356. Nº de ref. del artículo: 183060209
Cantidad disponible: 4 disponibles
Librería: Mispah books, Redhill, SURRE, Reino Unido
Paperback. Condición: Like New. Like New. book. Nº de ref. del artículo: ERICA77336420983636
Cantidad disponible: 1 disponibles