A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology. Many of the proofs are based on Robin Forman's discrete version of Morse theory.
"Sinopsis" puede pertenecer a otra edición de este libro.
A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology.
Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Better World Books, Mishawaka, IN, Estados Unidos de America
Condición: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Nº de ref. del artículo: 52419622-6
Cantidad disponible: 1 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: As New. Unread book in perfect condition. Nº de ref. del artículo: 5436968
Cantidad disponible: Más de 20 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020176465
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 5436968-n
Cantidad disponible: Más de 20 disponibles
Librería: Anybook.com, Lincoln, Reino Unido
Condición: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,650grams, ISBN:9783540758587. Nº de ref. del artículo: 2929099
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540758587
Cantidad disponible: Más de 20 disponibles
Librería: Libro Co. Italia Srl, San Casciano Val di Pesa, FI, Italia
Brossura. Condición: fine. Heidelberg, 2007; pp. 378. Libro. Nº de ref. del artículo: 1661263
Cantidad disponible: 3 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783540758587
Cantidad disponible: 10 disponibles
Librería: GreatBookPricesUK, Woodford Green, Reino Unido
Condición: New. Nº de ref. del artículo: 5436968-n
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A graph complex is a finite family of graphs closed under deletion of edges. Graph complexes show up naturally in many different areas of mathematics, including commutative algebra, geometry, and knot theory. Identifying each graph with its edge set, one may view a graph complex as a simplicial complex and hence interpret it as a geometric object. This volume examines topological properties of graph complexes, focusing on homotopy type and homology.Many of the proofs are based on Robin Forman's discrete version of Morse theory. As a byproduct, this volume also provides a loosely defined toolbox for attacking problems in topological combinatorics via discrete Morse theory. In terms of simplicity and power, arguably the most efficient tool is Forman's divide and conquer approach via decision trees; it is successfully applied to a large number of graph and digraph complexes. 400 pp. Englisch. Nº de ref. del artículo: 9783540758587
Cantidad disponible: 2 disponibles