This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.
"Sinopsis" puede pertenecer a otra edición de este libro.
This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: GuthrieBooks, Spring Branch, TX, Estados Unidos de America
Paperback. Condición: Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Text block clean and unmarked. Tight binding. Nº de ref. del artículo: DA1412502
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020175443
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540712305_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Topics in the 22 revised full papers range from theoretical analysis of mechanisms to practical consideration for successful application of such techniques to everyday datamining tasks. 364 pp. Englisch. Nº de ref. del artículo: 9783540712305
Cantidad disponible: 2 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 364. Nº de ref. del artículo: 26301753
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 364 Illus. Nº de ref. del artículo: 7546214
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 364. Nº de ref. del artículo: 18301747
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book constitutes the thoroughly refereed joint post-proceedings of three consecutive International Workshops on Learning Classifier Systems that took place in Chicago, IL in July 2003, in Seattle, WA in June 2004, and in Washington, DC in June 2005. Nº de ref. del artículo: 4899176
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -The work embodied in this volume was presented across three consecutive e- tions of the International Workshop on Learning Classi er Systems that took place in Chicago (2003), Seattle (2004), and Washington (2005). The Genetic and Evolutionary Computation Conference, the main ACM SIGEvo conference, hosted these three editions. The topics presented in this volume summarize the wide spectrum of interests of the Learning Classi er Systems (LCS) community. The topics range from theoretical analysis of mechanisms to practical cons- eration for successful application of such techniques to everyday data-mining tasks. When we started editing this volume, we faced the choice of organizing the contents in a purely chronologicalfashion or as a sequence of related topics that help walk the reader across the di erent areas. In the end we decided to or- nize the contents by area, breaking the time-line a little. This is not a simple endeavor as we can organize the material using multiple criteria. The tax- omy below is our humble e ort to provide a coherent grouping. Needless to say, some works may fall in more than one category. The four areas are as follows: Knowledge representation. These chapters elaborate on the knowledge r- resentations used in LCS. Knowledge representation is a key issue in any learning system and has implications for what it is possible to learn and what mechanisms shouldbe used. Four chapters analyze di erent knowledge representations and the LCS methods used to manipulate them.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 364 pp. Englisch. Nº de ref. del artículo: 9783540712305
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - The work embodied in this volume was presented across three consecutive e- tions of the International Workshop on Learning Classi er Systems that took place in Chicago (2003), Seattle (2004), and Washington (2005). The Genetic and Evolutionary Computation Conference, the main ACM SIGEvo conference, hosted these three editions. The topics presented in this volume summarize the wide spectrum of interests of the Learning Classi er Systems (LCS) community. The topics range from theoretical analysis of mechanisms to practical cons- eration for successful application of such techniques to everyday data-mining tasks. When we started editing this volume, we faced the choice of organizing the contents in a purely chronologicalfashion or as a sequence of related topics that help walk the reader across the di erent areas. In the end we decided to or- nize the contents by area, breaking the time-line a little. This is not a simple endeavor as we can organize the material using multiple criteria. The tax- omy below is our humble e ort to provide a coherent grouping. Needless to say, some works may fall in more than one category. The four areas are as follows: Knowledge representation. These chapters elaborate on the knowledge r- resentations used in LCS. Knowledge representation is a key issue in any learning system and has implications for what it is possible to learn and what mechanisms shouldbe used. Four chapters analyze di erent knowledge representations and the LCS methods used to manipulate them. Nº de ref. del artículo: 9783540712305
Cantidad disponible: 1 disponibles