Time delay systems exist in many engineering ?elds such as transportation, communication, process engineering and more recently networked control s- tems. In recent years,time delaysystems haveattracted recurring interests from research community. Much of the research work has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov- Krasovskii functionals and linear matrix inequality (LMI) approach. While the LMI approach does provide an e?cient tool for handling systems with delays in state and/or inputs, the LMI based results are mostly only su?cient and only numerical solutions are available. For systems with knownsingle input delay, there have been rather elegant- alytical solutions to various problems such as optimal tracking, linear quadratic regulation and H control. We note that discrete-time systems with delays can ? usually be converted into delay free systems via system augmentation, however, theaugmentationapproachleadsto muchhigher computationalcosts,especially for systems of higher state dimension and large delays. For continuous-time s- tems,time delayproblemscaninprinciple betreatedby thein?nite-dimensional system theory which, however,leads to solutions in terms of Riccati type partial di?erential equations or operator Riccati equations which are di?cult to und- stand and compute. Some attempts have been made in recent years to derive explicit and e?cient solutions for systems with input/output (i/o) delays. These include the study ontheH controlofsystemswith multiple input delaysbased ? on the stable eigenspace of a Hamlitonian matrix [46].
"Sinopsis" puede pertenecer a otra edición de este libro.
Time delay systems exist in many engineering ?elds such as transportation, communication, process engineering and more recently networked control s- tems. In recent years,time delaysystems haveattracted recurring interests from research community. Much of the research work has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov- Krasovskii functionals and linear matrix inequality (LMI) approach. While the LMI approach does provide an e?cient tool for handling systems with delays in state and/or inputs, the LMI based results are mostly only su?cient and only numerical solutions are available. For systems with knownsingle input delay, there have been rather elegant- alytical solutions to various problems such as optimal tracking, linear quadratic regulation and H control. We note that discrete-time systems with delays can ? usually be converted into delay free systems via system augmentation, however, theaugmentationapproachleadsto muchhigher computationalcosts,especially for systems of higher state dimension and large delays. For continuous-time s- tems,time delayproblemscaninprinciple betreatedby thein?nite-dimensional system theory which, however,leads to solutions in terms of Riccati type partial di?erential equations or operator Riccati equations which are di?cult to und- stand and compute. Some attempts have been made in recent years to derive explicit and e?cient solutions for systems with input/output (i/o) delays. These include the study ontheH controlofsystemswith multiple input delaysbased ? on the stable eigenspace of a Hamlitonian matrix [46].
Time delays exist in many engineering systems such as transportation, communication, process engineering and networked control systems. In recent years, time delay systems have attracted recurring interests from research community. Much of the effort has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov-Krasovskii functional together with a linear matrix inequality approach, which provides an efficient numerical tool for handling systems with delays in state and/or inputs. Recently, some more interesting and fundamental development for systems with input/output (i/o) delays has been made using time domain or frequency domain approaches. These approaches lead to analytical solutions to time delay problems in terms of Riccati equations or spectral factorizations. This monograph presents simple analytical solutions to control and estimation problems for systems with multiple i/o delays via elementary tools such as projection. We propose a re-organized innovation analysis approach for delay systems and establish a duality between optimal control of systems with multiple input delays and smoothing estimation for delay free systems. These appealing new techniques are applied to solve control and estimation problems for systems with multiple i/o delays and state delays under both the H2 and H-infinity performance criteria.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 14,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoGRATIS gastos de envío desde Estados Unidos de America a España
Destinos, gastos y plazos de envíoLibrería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-84221
Cantidad disponible: 1 disponibles
Librería: ALLBOOKS1, Direk, SA, Australia
Brand new book. Fast ship. Please provide full street address as we are not able to ship toPOboxaddress. Nº de ref. del artículo: SHUB269402
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 3500357/202
Cantidad disponible: 1 disponibles
Librería: Basi6 International, Irving, TX, Estados Unidos de America
Condición: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Nº de ref. del artículo: ABEJUNE24-269402
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents the latest results on estimation and control for time delay systemsSome of the works are fundamental to the time delay systemsKrein Space.- Optimal Estimation for Systems with Measurement Delays.- Optimal Control for Systems with . Nº de ref. del artículo: 4899148
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540711186_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Time delay systems exist in many engineering elds such as transportation, communication, process engineering and more recently networked control s- tems. In recent years,time delaysystems haveattracted recurring interests from research community. Much of the research work has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov- Krasovskii functionals and linear matrix inequality (LMI) approach. While the LMI approach does provide an e cient tool for handling systems with delays in state and/or inputs, the LMI based results are mostly only su cient and only numerical solutions are available. For systems with knownsingle input delay, there have been rather elegant- alytical solutions to various problems such as optimal tracking, linear quadratic regulation and H control. We note that discrete-time systems with delays can usually be converted into delay free systems via system augmentation, however, theaugmentationapproachleadsto muchhigher computationalcosts,especially for systems of higher state dimension and large delays. For continuous-time s- tems,time delayproblemscaninprinciple betreatedby thein nite-dimensional system theory which, however,leads to solutions in terms of Riccati type partial di erential equations or operator Riccati equations which are di cult to und- stand and compute. Some attempts have been made in recent years to derive explicit and e cient solutions for systems with input/output (i/o) delays. These include the study ontheH controlofsystemswith multiple input delaysbased on the stable eigenspace of a Hamlitonian matrix [46]. 232 pp. Englisch. Nº de ref. del artículo: 9783540711186
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Time delay systems exist in many engineering elds such as transportation, communication, process engineering and more recently networked control s- tems. In recent years,time delaysystems haveattracted recurring interests from research community. Much of the research work has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov- Krasovskii functionals and linear matrix inequality (LMI) approach. While the LMI approach does provide an e cient tool for handling systems with delays in state and/or inputs, the LMI based results are mostly only su cient and only numerical solutions are available. For systems with knownsingle input delay, there have been rather elegant- alytical solutions to various problems such as optimal tracking, linear quadratic regulation and H control. We note that discrete-time systems with delays can usually be converted into delay free systems via system augmentation, however, theaugmentationapproachleadsto muchhigher computationalcosts,especially for systems of higher state dimension and large delays. For continuous-time s- tems,time delayproblemscaninprinciple betreatedby thein nite-dimensional system theory which, however,leads to solutions in terms of Riccati type partial di erential equations or operator Riccati equations which are di cult to und- stand and compute. Some attempts have been made in recent years to derive explicit and e cient solutions for systems with input/output (i/o) delays. These include the study ontheH controlofsystemswith multiple input delaysbased on the stable eigenspace of a Hamlitonian matrix [46]. Nº de ref. del artículo: 9783540711186
Cantidad disponible: 1 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783540711186
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. Neuware -Time delay systems exist in many engineering elds such as transportation, communication, process engineering and more recently networked control s- tems. In recent years,time delaysystems haveattracted recurring interests from research community. Much of the research work has been focused on stability analysis and stabilization of time delay systems using the so-called Lyapunov- Krasovskii functionals and linear matrix inequality (LMI) approach. While the LMI approach does provide an e cient tool for handling systems with delays in state and/or inputs, the LMI based results are mostly only su cient and only numerical solutions are available. For systems with knownsingle input delay, there have been rather elegant- alytical solutions to various problems such as optimal tracking, linear quadratic regulation and H control. We note that discrete-time systems with delays can usually be converted into delay free systems via system augmentation, however, theaugmentationapproachleadsto muchhigher computationalcosts,especially for systems of higher state dimension and large delays. For continuous-time s- tems,time delayproblemscaninprinciple betreatedby thein nite-dimensional system theory which, however,leads to solutions in terms of Riccati type partial di erential equations or operator Riccati equations which are di cult to und- stand and compute. Some attempts have been made in recent years to derive explicit and e cient solutions for systems with input/output (i/o) delays. These include the study ontheH controlofsystemswith multiple input delaysbased on the stable eigenspace of a Hamlitonian matrix [46].Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 232 pp. Englisch. Nº de ref. del artículo: 9783540711186
Cantidad disponible: 2 disponibles