Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in §§ 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In § 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip §§ 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965.
"Sinopsis" puede pertenecer a otra edición de este libro.
Biography of Shoshichi Kobayashi
Shoshichi Kobayashi was born January 4, 1932 in Kofu, Japan. After obtaining his mathematics degree from the University of Tokyo and his Ph.D. from the University of Washington, Seattle, he held positions at the Institute for Advanced Study, Princeton, at MIT and at the University of British Columbia between 1956 and 1962, and then moved to the University of California, Berkeley, where he is now Professor in the Graduate School.
Kobayashi's research spans the areas of differential geometry of real and complex variables, and his numerous resulting publications include several book: Foundations of Differential Geometry with N. Nomizu, Hyperbolic Complex Manifolds and Holomorphic mappings and Differential Geometry of Complex Vector Bundles.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 8,90 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Renner OHG, Albstadt, Alemania
Softcover. Condición: Sehr gut. Reprint of the ed. 1972. Berlin, Springer (1995). gr.8°. VIII, 182 p. Pbck. (edge slightly browned, otherwise in very good condition).- Classics in Mathematics.- Incl. bibliography. Nº de ref. del artículo: 79080
Cantidad disponible: 1 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
perfect. Condición: Very Good. Nº de ref. del artículo: mon0003809066
Cantidad disponible: 1 disponibles
Librería: Plurabelle Books Ltd, Cambridge, Reino Unido
Paperback. Condición: Very Good. Series: Classics in Mathematics. viii 182p slim neat paperback, lemon-yellow cover, very good condition, a fresh copy, spine a bit sunned, tight binding, clean and bright pages, free from highlighting and annotation, a splendid copy Language: English Weight (g): 980. Nº de ref. del artículo: 233744
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 484863/3
Cantidad disponible: 3 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965. 196 pp. Englisch. Nº de ref. del artículo: 9783540586593
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Given a mathematical structure, one of the basic associated mathematical objects is its automorphism group. The object of this book is to give a biased account of automorphism groups of differential geometric struc tures. All geometric structures are not created equal; some are creations of ~ods while others are products of lesser human minds. Amongst the former, Riemannian and complex structures stand out for their beauty and wealth. A major portion of this book is therefore devoted to these two structures. Chapter I describes a general theory of automorphisms of geometric structures with emphasis on the question of when the automorphism group can be given a Lie group structure. Basic theorems in this regard are presented in 3, 4 and 5. The concept of G-structure or that of pseudo-group structure enables us to treat most of the interesting geo metric structures in a unified manner. In 8, we sketch the relationship between the two concepts. Chapter I is so arranged that the reader who is primarily interested in Riemannian, complex, conformal and projective structures can skip 5, 6, 7 and 8. This chapter is partly based on lec tures I gave in Tokyo and Berkeley in 1965. Nº de ref. del artículo: 9783540586593
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540586593_new
Cantidad disponible: Más de 20 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540586593
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Biography of Shoshichi KobayashiShoshichi Kobayashi was born January 4, 1932 in Kofu, Japan. After obtaining his mathematics degree from the University of Tokyo and his Ph.D. from the University of Washington, Seattle, he held pos. Nº de ref. del artículo: 4894802
Cantidad disponible: Más de 20 disponibles
Librería: GreatBookPrices, Columbia, MD, Estados Unidos de America
Condición: New. Nº de ref. del artículo: 4850384-n
Cantidad disponible: 15 disponibles