This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The particular approach adopted here involves an arbitrary coupling parameter and the effect that this parameter has on the stability and accuracy of the numerical method used to solve the integral equation is examined. The boundary integral analysis of the exterior acoustic problem is coupled with a finite element analysis of the elastic structure in order to investigate the interaction between the dynamic behaviour of the structure and the associated acoustic field. Recently there has been some controversy over whether or not the coupled problem also suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. This question is resolved by demonstrating that .the solution to the coupled problem is not unique at the characteristic frequencies and that it is necessary to employ an integral equation formulation valid for all frequencies.
"Sinopsis" puede pertenecer a otra edición de este libro.
This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The particular approach adopted here involves an arbitrary coupling parameter and the effect that this parameter has on the stability and accuracy of the numerical method used to solve the integral equation is examined. The boundary integral analysis of the exterior acoustic problem is coupled with a finite element analysis of the elastic structure in order to investigate the interaction between the dynamic behaviour of the structure and the associated acoustic field. Recently there has been some controversy over whether or not the coupled problem also suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. This question is resolved by demonstrating that .the solution to the coupled problem is not unique at the characteristic frequencies and that it is necessary to employ an integral equation formulation valid for all frequencies.
This text considers computational techniques for the analysis of the dynamic fluid-structure interaction between a finite elastic structure and the associated acoustic field in the surrounding medium. Detailed attention is paid to almost all aspects of a complete solution to the fluid-structure interaction problem. Starting from the mathematical formulation, as partial differential equations, of the idealised problem, the text takes the reader through reformulation of the problem as boundary integral and variational equations, followed by a comprehensive study of their numerical solution by boundary and finite element methods, to details of actual experiments using sonar transducers in a test tank. The presentation is aimed at postgraduate students and researchers in engineering, science and mathematics who may be working in the areas of boundary integral methods, finite element methods, acoustics, and, of course, the fluid structure interaction.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 28,78 gastos de envío desde Reino Unido a Estados Unidos de America
Destinos, gastos y plazos de envíoEUR 3,43 gastos de envío en Estados Unidos de America
Destinos, gastos y plazos de envíoLibrería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020170467
Cantidad disponible: Más de 20 disponibles
Librería: Grand Eagle Retail, Bensenville, IL, Estados Unidos de America
Paperback. Condición: new. Paperback. This text considers computational techniques for the analysis of the dynamic fluid-structure interaction between a finite elastic structure and the associated acoustic field in the surrounding medium. Detailed attention is paid to almost all aspects of a complete solution to the fluid-structure interaction problem. Starting from the mathematical formulation, as partial differential equations, of the idealized problem, the text takes the reader through reformulation of the problem as boundary integral and variational equations, followed by a comprehensive study of their numerical solution by boundary and finite element methods, to details of actual experiments using sonar transducers in a test tank. The presentation is aimed at postgraduate students and researchers in engineering, science and mathematics who may be working in the areas of boundary integral methods, finite element methods, acoustics, and the fluid structure interaction. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Nº de ref. del artículo: 9783540555629
Cantidad disponible: 1 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The particular approach adopted here involves an arbitrary coupling parameter and the effect that this parameter has on the stability and accuracy of the numerical method used to solve the integral equation is examined. The boundary integral analysis of the exterior acoustic problem is coupled with a finite element analysis of the elastic structure in order to investigate the interaction between the dynamic behaviour of the structure and the associated acoustic field. Recently there has been some controversy over whether or not the coupled problem also suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. This question is resolved by demonstrating that .the solution to the coupled problem is not unique at the characteristic frequencies and that it is necessary to employ an integral equation formulation valid for all frequencies. 120 pp. Englisch. Nº de ref. del artículo: 9783540555629
Cantidad disponible: 2 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540555629_new
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 120. Nº de ref. del artículo: 2658567714
Cantidad disponible: 4 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation o. Nº de ref. del artículo: 4893647
Cantidad disponible: Más de 20 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 120 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam. Nº de ref. del artículo: 50992125
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 120. Nº de ref. del artículo: 1858567720
Cantidad disponible: 4 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. reprint edition. 120 pages. 9.61x6.69x0.28 inches. In Stock. Nº de ref. del artículo: x-3540555625
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This text considers the problem of the dynamic fluid-structure interaction between a finite elastic structure and the acoustic field in an unbounded fluid-filled exterior domain. The exterior acoustic field is modelled through a boundary integral equation over the structure surface. However, the classical boundary integral equation formulations of this problem either have no solutions or do not have unique solutions at certain characteristic frequencies (which depend on the surface geometry) and it is necessary to employ modified boundary integral equation formulations which are valid for all frequencies. The particular approach adopted here involves an arbitrary coupling parameter and the effect that this parameter has on the stability and accuracy of the numerical method used to solve the integral equation is examined. The boundary integral analysis of the exterior acoustic problem is coupled with a finite element analysis of the elastic structure in order to investigate the interaction between the dynamic behaviour of the structure and the associated acoustic field. Recently there has been some controversy over whether or not the coupled problem also suffers from the non-uniqueness problems associated with the classical integral equation formulations of the exterior acoustic problem. This question is resolved by demonstrating that .the solution to the coupled problem is not unique at the characteristic frequencies and that it is necessary to employ an integral equation formulation valid for all frequencies.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch. Nº de ref. del artículo: 9783540555629
Cantidad disponible: 1 disponibles