The book presents a new boundary element formulation for the solution of boundary-value problems in potential theory and linear elastostatics. The basis of the approach is a multi-field variational principle. A stiffness type of formulation is generated, involving a symmetric stiffness matrix, which is only evaluated on the boundary. The formulation is completely developed and its implementation in computer code is explained in detail. Se- veral numerical examples are shown and the solutions are compared to analytical and to other approximate solutions. Further a study of the convergence of the solutions is presented.
"Sinopsis" puede pertenecer a otra edición de este libro.
1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari ables. The model is completely new; it differs from the classical boundary element formulation ·in the way it is generated and consequently in the fi nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary.
The book presents a new boundary element formulation for the solution of boundary-value problems in potential theory and linear elastostatics. The basis of the approach is a multi-field variational principle. A stiffness type of formulation is generated, involving a symmetric stiffness matrix, which is only evaluated on the boundary. The formulation is completely developed and its implementation in computer code is explained in detail. Se- veral numerical examples are shown and the solutions are compared to analytical and to other approximate solutions. Further a study of the convergence of the solutions is presented.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 12,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 19,49 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Dennis R. Plummer, Bingen am Rhein, Alemania
Gr.-8°, Original-Broschur. Condición: Akzeptabel. IX, 198 SS. Lecture Notes in Engineering, 68. - Ehemaliges Bibliotheksexemplar mit den üblichen Stempeln und Signaturen, Rücken mit Signaturschildchen. Seiten papierbedingt ganz leicht gebräunt. Sonst gutes Exemplar. / Ex library copy with the usual label, stamps and markings. Light browning. Else well preserved. Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 51346
Cantidad disponible: 1 disponibles
Librería: Powell's Bookstores Chicago, ABAA, Chicago, IL, Estados Unidos de America
Condición: Used - Very Good. 1991. Paperback. Pbk. Some shelf-wear. Else clean copy. Very Good. Nº de ref. del artículo: SON000034661
Cantidad disponible: 1 disponibles
Librería: Midtown Scholar Bookstore, Harrisburg, PA, Estados Unidos de America
Paperback. Condición: Very Good. Standard-sized. Nº de ref. del artículo: M354054030XZ2
Cantidad disponible: 4 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Gut. Zustand: Gut | Sprache: Englisch | Produktart: Bücher. Nº de ref. del artículo: 22696810/203
Cantidad disponible: 1 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the . Nº de ref. del artículo: 4893032
Cantidad disponible: Más de 20 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari ables. The model is completely new; it differs from the classical boundary element formulation in the way it is generated and consequently in the fi nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary. Nº de ref. del artículo: 9783540540304
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540540304_new
Cantidad disponible: Más de 20 disponibles
Librería: Best Price, Torrance, CA, Estados Unidos de America
Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783540540304
Cantidad disponible: 2 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari ables. The model is completely new; it differs from the classical boundary element formulation in the way it is generated and consequently in the fi nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary. 216 pp. Englisch. Nº de ref. del artículo: 9783540540304
Cantidad disponible: 2 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -1. 1 The Hybrid Displacement Boundary Element Model This work is concerned with the derivation of a numerical model for the solution of boundary-value problems in potential theory and linear elasticity. It is considered a boundary element model because the final integral equation involves some boundary integrals, whose evaluation requires a boundary discretization. Furthermore, all the unknowns are boundary vari ables. The model is completely new; it differs from the classical boundary element formulation in the way it is generated and consequently in the fi nal equations. A generalized variational principle is used as a basis for its derivation, whereas the conventional boundary element formulation is based on Green's formula (potential problems) and on Somigliana's identity (elas ticity), or alternatively through the weighted residual technique. 2 The multi-field variational principle which generates the formulation in volves three independent variables. For potential problems, these are the potential in the domain and the potential and its normal derivative on the boundary. In the case of elasticity, these variables are displacements in the domain and displacements and tractions on the boundary. For this reason, by analogy with the assumed displacement hybrid finite element model, ini tially proposed by Tong [1] in 1970, it can be called a hybrid displacement model. The final system of equations to be solved is similar to that found in a stiffness formulation. The stiffness matrix for this model is symmetric and can be evaluated by only performing integrations along the boundary.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Nº de ref. del artículo: 9783540540304
Cantidad disponible: 1 disponibles