About 60 years ago, R. Brauer introduced "block theory"; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block.
But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras".
In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary.
The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
"Sinopsis" puede pertenecer a otra edición de este libro.
From the reviews:
"The author’s purpose here is to provide a better understanding of the subject, and to make the proofs understandable by students in group theory. The book, which is written in both Chinese (in simple characters) and English, consists of 16 sections. All the concepts are carefully introduced, and the proofs are complete and given in detail, assuming only knowledge of Wedderburn’s theorems, Nakayama’s Lemma and other basic algebraic topics." (Jian Bei An, Mathematical Reviews, 2003 j)
"The book ... contains an exposition of the author’s main result on the hyperfocal subalgebra of a block. ... The book is bilingual; each page consists of two columns, one with the Chinese and one with the English text. The author has made an effort to make his exposition self-contained ... . Also, the original proof of the main result has been modified and improved at several points. One of the new concepts that is studied ... is that of a divisor on a G-algebra." (Burkhard Külshammer, Zentralblatt MATH, Vol. 1002 (2), 2003)
About 60 years ago, R. Brauer introduced "block theory"; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block.
But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras".
In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary.
The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 7,00 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoEUR 11,82 gastos de envío desde Alemania a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. 213 p. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04266 9783540435143 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2490496
Cantidad disponible: 1 disponibles
Librería: Antiquariat Bookfarm, Löbnitz, Alemania
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 20 PUI 9783540435143 Sprache: Englisch Gewicht in Gramm: 550. Nº de ref. del artículo: 2498884
Cantidad disponible: 1 disponibles
Librería: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Alemania
213 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Springer Monographs in Mathematics. Sprache: Englisch. Nº de ref. del artículo: 6801AB
Cantidad disponible: 11 disponibles
Librería: ANTIQUARIAT Franke BRUDDENBOOKS, Lübeck, Alemania
Condición: Neu. 2002. 220 S. Buch ist neu, aus priv. Vorbesitz, ungelesen. -----Inhalt:. About 60 years ago, R. Brauer introduced "block theory"; his purpose was to study the group algebra kG of a finite group G over a field k of nonzero characteristic p: any indecomposable two-sided ideal that also is a direct summand of kG determines a G-block. But the main discovery of Brauer is perhaps the existence of families of infinitely many nonisomorphic groups having a "common block"; i.e., blocks having mutually isomorphic "source algebras". In this book, based on a course given by the author at Wuhan University in 1999, all the concepts mentioned are introduced, and all the proofs are developed completely. Its main purpose is the proof of the existence and the uniqueness of the "hyperfocal subalgebra" in the source algebra. This result seems fundamental in block theory; for instance, the structure of the source algebra of a nilpotent block, an important fact in block theory, can be obtained as a corollary. The exceptional layout of this bilingual edition featuring 2 columns per page (one English, one Chinese) sharing the displayed mathematical formulas is the joint achievement of the author and A. Arabia. 1. Introduction.- 2. Lifting Idempotents.- 3. Points of the O-algebras and Multiplicity of the Points.- 4. Divisors on N-interior G-algebras.- 5. Restriction and Induction of Divisors.- 6. Local Pointed Groups on N-interior G-algebras.- 7. On Green's Indecomposability Theorem.- 8. Fusions in N-interior G-algebras.- 9. N-interior G-algebras through G-interior Algebras.- 10. Pointed Groups on the Group Algebra.- 11. Fusion ?-algebra of a Block.- 12. Source Algebras of Blocks.- 13. Local Structure of the Hyperfocal Subalgebra.- 14. Uniqueness of the Hyperfocal Subalgebra.- 15. Existence of the Hyperfocal Subalgebra.- 16. On the Exponential and Logarithmic Functions in O-algebras.- References. ISBN: 9783540435143 Wir senden umgehend mit beiliegender MwSt.Rechnung. Sprache: Englisch Gewicht in Gramm: 454 Gebundene Ausgabe, Maße: 15.88 cm x 1.91 cm x 23.5 cm. Nº de ref. del artículo: 668540
Cantidad disponible: 1 disponibles
Librería: Books From California, Simi Valley, CA, Estados Unidos de America
hardcover. Condición: Very Good. Nº de ref. del artículo: mon0003209265
Cantidad disponible: 1 disponibles
Librería: Romtrade Corp., STERLING HEIGHTS, MI, Estados Unidos de America
Condición: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Nº de ref. del artículo: ABNR-92833
Cantidad disponible: 1 disponibles
Librería: Buchpark, Trebbin, Alemania
Condición: Sehr gut. Zustand: Sehr gut | Seiten: 224 | Sprache: chi | Produktart: Sonstiges. Nº de ref. del artículo: 1039055/202
Cantidad disponible: 1 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 226. Nº de ref. del artículo: 26481554
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 226 Illus. Nº de ref. del artículo: 7399117
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 226. Nº de ref. del artículo: 18481560
Cantidad disponible: 1 disponibles