Multiple Classifier Systems: Second International Workshop, MCS 2001 Cambridge, UK, July 2-4, 2001 Proceedings: 2096 (Lecture Notes in Computer Science, 2096) - Tapa blanda

 
9783540422846: Multiple Classifier Systems: Second International Workshop, MCS 2001 Cambridge, UK, July 2-4, 2001 Proceedings: 2096 (Lecture Notes in Computer Science, 2096)

Sinopsis

Driven by the requirements of a large number of practical and commercially - portant applications, the last decade has witnessed considerable advances in p- tern recognition. Better understanding of the design issues and new paradigms, such as the Support Vector Machine, have contributed to the development of - proved methods of pattern classi cation. However, while any performance gains are welcome, and often extremely signi cant from the practical point of view, it is increasingly more challenging to reach the point of perfection as de ned by the theoretical optimality of decision making in a given decision framework. The asymptoticity of gains that can be made for a single classi er is a re?- tion of the fact that any particular design, regardless of how good it is, simply provides just one estimate of the optimal decision rule. This observation has motivated the recent interest in Multiple Classi er Systems , which aim to make use of several designs jointly to obtain a better estimate of the optimal decision boundary and thus improve the system performance. This volume contains the proceedings of the international workshop on Multiple Classi er Systems held at Robinson College, Cambridge, United Kingdom (July 2{4, 2001), which was organized to provide a forum for researchers in this subject area to exchange views and report their latest results.

"Sinopsis" puede pertenecer a otra edición de este libro.

Reseña del editor

Driven by the requirements of a large number of practical and commercially - portant applications, the last decade has witnessed considerable advances in p- tern recognition. Better understanding of the design issues and new paradigms, such as the Support Vector Machine, have contributed to the development of - proved methods of pattern classi cation. However, while any performance gains are welcome, and often extremely signi cant from the practical point of view, it is increasingly more challenging to reach the point of perfection as de ned by the theoretical optimality of decision making in a given decision framework. The asymptoticity of gains that can be made for a single classi er is a re?- tion of the fact that any particular design, regardless of how good it is, simply provides just one estimate of the optimal decision rule. This observation has motivated the recent interest in Multiple Classi er Systems , which aim to make use of several designs jointly to obtain a better estimate of the optimal decision boundary and thus improve the system performance. This volume contains the proceedings of the international workshop on Multiple Classi er Systems held at Robinson College, Cambridge, United Kingdom (July 2{4, 2001), which was organized to provide a forum for researchers in this subject area to exchange views and report their latest results.

Reseña del editor

This book constitutes the refereed proceedings of the Second International Workshop on Multiple Classifier Systems, MCS 2001, held in Cambridge, UK in July 2001.
The 44 revised papers presented were carefully reviewed and selected for presentation. The book offers topical sections on bagging and boosting, MCS design methodology, ensemble classifiers, feature spaces for MCS, MCS in remote sensing, one class MCS and clustering, and combination strategies.

"Sobre este título" puede pertenecer a otra edición de este libro.