Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.
"Sinopsis" puede pertenecer a otra edición de este libro.
Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 228. Nº de ref. del artículo: 263062929
Cantidad disponible: 1 disponibles
Librería: WeBuyBooks, Rossendale, LANCS, Reino Unido
Condición: Like New. Most items will be dispatched the same or the next working day. An apparently unread copy in perfect condition. Dust cover is intact with no nicks or tears. Spine has no signs of creasing. Pages are clean and not marred by notes or folds of any kind. Nº de ref. del artículo: wbs6279007074
Cantidad disponible: 1 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. pp. 228 Illus. Nº de ref. del artículo: 5833550
Cantidad disponible: 1 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. pp. 228. Nº de ref. del artículo: 183062939
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020166534
Cantidad disponible: Más de 20 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540412076_new
Cantidad disponible: Más de 20 disponibles
Librería: Chiron Media, Wallingford, Reino Unido
PF. Condición: New. Nº de ref. del artículo: 6666-IUK-9783540412076
Cantidad disponible: 10 disponibles
Librería: Revaluation Books, Exeter, Reino Unido
Paperback. Condición: Brand New. 214 pages. 9.25x6.25x0.75 inches. In Stock. Nº de ref. del artículo: x-3540412077
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Kartoniert / Broschiert. Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Includes supplementary material: sn.pub/extrasGeneralized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive . Nº de ref. del artículo: 4889157
Cantidad disponible: Más de 20 disponibles
Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania
Taschenbuch. Condición: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Generalized method of moments (GMM) estimation of nonlinear systems has two important advantages over conventional maximum likelihood (ML) estimation: GMM estimation usually requires less restrictive distributional assumptions and remains computationally attractive when ML estimation becomes burdensome or even impossible. This book presents an in-depth treatment of the conditional moment approach to GMM estimation of models frequently encountered in applied microeconometrics. It covers both large sample and small sample properties of conditional moment estimators and provides an application to empirical industrial organization. With its comprehensive and up-to-date coverage of the subject which includes topics like bootstrapping and empirical likelihood techniques, the book addresses scientists, graduate students and professionals in applied econometrics.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 228 pp. Englisch. Nº de ref. del artículo: 9783540412076
Cantidad disponible: 1 disponibles