It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
"Sinopsis" puede pertenecer a otra edición de este libro.
It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points.
This book takes the view that parallel to the pure arithmetic theory over number fields lies the algebraic-geometric theory of algebraic systems, where sections play the role of rational points. The author formulates analogs of classic diophantine problems.
"Sobre este título" puede pertenecer a otra edición de este libro.
EUR 19,00 gastos de envío desde Austria a España
Destinos, gastos y plazos de envíoEUR 5,14 gastos de envío desde Reino Unido a España
Destinos, gastos y plazos de envíoLibrería: Antiquariat Deinbacher, Murstetten, Austria
1.Auflage,. xi, 261 Seiten Einband etwas berieben, Bibl.Ex., innen guter und sauberer Zustand 9783540084891 Sprache: Englisch Gewicht in Gramm: 1250 8° , Leinen- Hardcover/Pappeinband. Nº de ref. del artículo: 154312
Cantidad disponible: 1 disponibles
Librería: Antiquariat Silvanus - Inhaber Johannes Schaefer, Ahrbrück, Alemania
XI, 261 pp. with some Figures, 3540084894 Sprache: Englisch Gewicht in Gramm: 560 Groß 8°, Original-Pappband (Hardcover), Bibliotheks-Exemplar (ordnungsgemäß entwidmet) mit Rückenschild, Stempel auf Titel und Schnitt, insgesamt gutes und innen sauberes Exemplar, (library copy in good condition), Nº de ref. del artículo: 126005
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Hardcover. Condición: Good. Type: Book N.B. Heavy rubbing to bottom inch of spine. Two very small dents to bottom edge of boards. Nº de ref. del artículo: 060400
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Cloth. Condición: Very Good. Type: Book N.B. Small plain label to ffep. (MATHEMATICS). Nº de ref. del artículo: 300527
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540084891_new
Cantidad disponible: Más de 20 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function. Nº de ref. del artículo: 4880046
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points. 280 pp. Englisch. Nº de ref. del artículo: 9783540084891
Cantidad disponible: 2 disponibles
Librería: AHA-BUCH GmbH, Einbeck, Alemania
Buch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - It is possible to write endlessly on elliptic curves. (This is not a threat.) We deal here with diophantine problems, and we lay the foundations, especially for the theory of integral points. We review briefly the analytic theory of the Weierstrass function, and then deal with the arithmetic aspects of the addition formula, over complete fields and over number fields, giving rise to the theory of the height and its quadraticity. We apply this to integral points, covering the inequalities of diophantine approximation both on the multiplicative group and on the elliptic curve directly. Thus the book splits naturally in two parts. The first part deals with the ordinary arithmetic of the elliptic curve: The transcendental parametrization, the p-adic parametrization, points of finite order and the group of rational points, and the reduction of certain diophantine problems by the theory of heights to diophantine inequalities involving logarithms. The second part deals with the proofs of selected inequalities, at least strong enough to obtain the finiteness of integral points. Nº de ref. del artículo: 9783540084891
Cantidad disponible: 1 disponibles
Librería: Gulf Coast Books, Cypress, TX, Estados Unidos de America
hardcover. Condición: Good. Nº de ref. del artículo: 3540084894-3-29047117
Cantidad disponible: 1 disponibles
Librería: California Books, Miami, FL, Estados Unidos de America
Condición: New. Nº de ref. del artículo: I-9783540084891
Cantidad disponible: Más de 20 disponibles