The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.
"Sinopsis" puede pertenecer a otra edición de este libro.
The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable.
"Sobre este título" puede pertenecer a otra edición de este libro.
Librería: PsychoBabel & Skoob Books, Didcot, Reino Unido
Hardcover. Condición: Very Good. Estado de la sobrecubierta: No Dust Jacket. Hard cover, no jacket intended, in fine condition, from the collection of a London Professor of Mathematics, (ret'd.). Yellow cloth boards are immaculate, pages tightly bound, content unmarked. CN. Nº de ref. del artículo: 616642
Cantidad disponible: 1 disponibles
Librería: Fireside Bookshop, Stroud, GLOS, Reino Unido
Cloth. Condición: Very Good. Type: Book N.B. Small plain label to ffep. Inscription to front paste down. Nº de ref. del artículo: 300515
Cantidad disponible: 1 disponibles
Librería: Lucky's Textbooks, Dallas, TX, Estados Unidos de America
Condición: New. Nº de ref. del artículo: ABLIING23Mar3113020158067
Cantidad disponible: Más de 20 disponibles
Librería: Antiquariat Bernhardt, Kassel, Alemania
gebundene Ausgabe. Condición: Sehr gut. Grundlehren der mathematischen Wissenschaften (230), Zust: Gutes Exemplar. Mit Institutsstempel. IX, 227 S. Englisch 536g. Nº de ref. del artículo: 488164
Cantidad disponible: 1 disponibles
Librería: Ria Christie Collections, Uxbridge, Reino Unido
Condición: New. In. Nº de ref. del artículo: ria9783540083931_new
Cantidad disponible: Más de 20 disponibles
Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania
Buch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The question of existence of c10sed geodesics on a Riemannian manifold and the properties of the corresponding periodic orbits in the geodesic flow has been the object of intensive investigations since the beginning of global differential geo metry during the last century. The simplest case occurs for c10sed surfaces of negative curvature. Here, the fundamental group is very large and, as shown by Hadamard [Had] in 1898, every non-null homotopic c10sed curve can be deformed into a c10sed curve having minimallength in its free homotopy c1ass. This minimal curve is, up to the parameterization, uniquely determined and represents a c10sed geodesic. The question of existence of a c10sed geodesic on a simply connected c10sed surface is much more difficult. As pointed out by Poincare [po 1] in 1905, this problem has much in common with the problem ofthe existence of periodic orbits in the restricted three body problem. Poincare [l.c.] outlined a proof that on an analytic convex surface which does not differ too much from the standard sphere there always exists at least one c10sed geodesic of elliptic type, i. e., the corres ponding periodic orbit in the geodesic flow is infinitesimally stable. 248 pp. Englisch. Nº de ref. del artículo: 9783540083931
Cantidad disponible: 2 disponibles
Librería: moluna, Greven, Alemania
Condición: New. Nº de ref. del artículo: 4879997
Cantidad disponible: Más de 20 disponibles
Librería: Books Puddle, New York, NY, Estados Unidos de America
Condición: New. pp. 248. Nº de ref. del artículo: 263091852
Cantidad disponible: 4 disponibles
Librería: Majestic Books, Hounslow, Reino Unido
Condición: New. Print on Demand pp. 248 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam. Nº de ref. del artículo: 5804627
Cantidad disponible: 4 disponibles
Librería: Biblios, Frankfurt am main, HESSE, Alemania
Condición: New. PRINT ON DEMAND pp. 248. Nº de ref. del artículo: 183091846
Cantidad disponible: 4 disponibles