Artículos relacionados a Learning Subsequential Transducers. A Categorical Approach

Learning Subsequential Transducers. A Categorical Approach - Tapa blanda

 
9783389015650: Learning Subsequential Transducers. A Categorical Approach

Sinopsis

Master's Thesis from the year 2024 in the subject Computer Sciences - Artificial Intelligence, Università degli Studi di Milano (Dipartimento di Matematica), course: Corso di Laurea Magistrale in Matematica, language: English, abstract: In this thesis, an algorithm for learning subsequential transducers is presented from two different perspectives: as an extension of Angluin's algorithm for learning deterministic finite automata and as an instantiation of a more generic categorical algorithm valid for a larger class of automata. The adopted categorical approach considers automata as functors from a category representing words to a certain output category. Some sufficient properties for yielding the existence of minimal automata are presented, together with some additional hypotheses relative to termination to ensure the correctness of the generic algorithm. Remarkably, the conditions required in Angluin's original algorithm and in its extended version for subsequential transducers naturally arise as the generic categorical algorithm is instantiated with the proper output categories. It is not uncommon to understand facts, processes and results better by looking at them from above: learning is not an exception. Learning is a crucial area in computer science, especially in artificial intelligence: knowing how to deal with communication, mistakes and experience plays an essential role to progress in learning. But even more important is learning what makes communication possible: a language. A language can be initially thought as a subset of a set of words over an alphabet, always supposed to be finite.The relation between languages and automata has become clearer and clearer in the last decades, since Noam Chomsky gave a mathematical model of a grammar in the second half of the last century. A deterministic finite automaton accepts a language, called regular, and for every regular language there exists a deterministic finite automaton being minimal, i.e. with a minim

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Learning Subsequential Transducers. A Categorical Approach

Imagen de archivo

Riccardo Stabile
Publicado por GRIN Verlag Apr 2024, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 92 pp. Englisch. Nº de ref. del artículo: 9783389015650

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Riccardo Stabile
Publicado por GRIN Verlag, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Master's Thesis from the year 2024 in the subject Computer Sciences - Artificial Intelligence, Università degli Studi di Milano (Dipartimento di Matematica), course: Corso di Laurea Magistrale in Matematica, language: English, abstract: In this thesis, an algorithm for learning subsequential transducers is presented from two different perspectives: as an extension of Angluin's algorithm for learning deterministic finite automata and as an instantiation of a more generic categorical algorithm valid for a larger class of automata. The adopted categorical approach considers automata as functors from a category representing words to a certain output category. Some sufficient properties for yielding the existence of minimal automata are presented, together with some additional hypotheses relative to termination to ensure the correctness of the generic algorithm. Remarkably, the conditions required in Angluin¿s original algorithm and in its extended version for subsequential transducers naturally arise as the generic categorical algorithm is instantiated with the proper output categories.It is not uncommon to understand facts, processes and results better by looking at them from above: learning is not an exception. Learning is a crucial area in computer science, especially in artificial intelligence: knowing how to deal with communication, mistakes and experience plays an essential role to progress in learning. But even more important is learning what makes communication possible: a language. A language can be initially thought as a subset of a set of words over an alphabet, always supposed to be finite.The relation between languages and automata has become clearer and clearer in the last decades, since Noam Chomsky gave a mathematical model of a grammar in the second half of the last century.A deterministic finite automaton accepts a language, called regular, and for every regular language there exists a deterministic finite automaton being minimal, i.e. with a minimal number of states, that accepts it. An analogous thing happens for subsequential transducers, which are automata more complex than deterministic finite automata: in this case, some partial functions, called subsequential, from a set of words to another over possibly different alphabets are accepted;asubsequential transducer accepts a particular subsequential function and for every subsequential function there exists a minimal subsequential transducer accepting it. This is the reason why learning regular languages and subsequential functions may be pursued by learning the minimal automata accepting them. Nº de ref. del artículo: 9783389015650

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Stabile, Riccardo
Publicado por Grin Verlag, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783389015650

Contactar al vendedor

Comprar nuevo

EUR 57,73
Convertir moneda
Gastos de envío: EUR 6,90
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Riccardo Stabile
Publicado por GRIN Verlag, GRIN Verlag Apr 2024, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Master's Thesis from the year 2024 in the subject Computer Sciences - Artificial Intelligence, Università degli Studi di Milano (Dipartimento di Matematica), course: Corso di Laurea Magistrale in Matematica, language: English, abstract: In this thesis, an algorithm for learning subsequential transducers is presented from two different perspectives: as an extension of Angluin's algorithm for learning deterministic finite automata and as an instantiation of a more generic categorical algorithm valid for a larger class of automata. The adopted categorical approach considers automata as functors from a category representing words to a certain output category. Some sufficient properties for yielding the existence of minimal automata are presented, together with some additional hypotheses relative to termination to ensure the correctness of the generic algorithm. Remarkably, the conditions required in Angluin¿s original algorithm and in its extended version for subsequential transducers naturally arise as the generic categorical algorithm is instantiated with the proper output categories.It is not uncommon to understand facts, processes and results better by looking at them from above: learning is not an exception. Learning is a crucial area in computer science, especially in artificial intelligence: knowing how to deal with communication, mistakes and experience plays an essential role to progress in learning. But even more important is learning what makes communication possible: a language. A language can be initially thought as a subset of a set of words over an alphabet, always supposed to be finite.The relation between languages and automata has become clearer and clearer in the last decades, since Noam Chomsky gave a mathematical model of a grammar in the second half of the last century.A deterministic finite automaton accepts a language, called regular, and for every regular language there exists a deterministic finite automaton being minimal, i.e. with a minimal number of states, that accepts it. An analogous thing happens for subsequential transducers, which are automata more complex than deterministic finite automata: in this case, some partial functions, called subsequential, from a set of words to another over possibly different alphabets are accepted;asubsequential transducer accepts a particular subsequential function and for every subsequential function there exists a minimal subsequential transducer accepting it. This is the reason why learning regular languages and subsequential functions may be pursued by learning the minimal automata accepting them. 92 pp. Englisch. Nº de ref. del artículo: 9783389015650

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Riccardo Stabile
Publicado por GRIN Verlag, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Learning Subsequential Transducers. A Categorical Approach | Riccardo Stabile | Taschenbuch | Englisch | 2024 | GRIN Verlag | EAN 9783389015650 | Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Nº de ref. del artículo: 129072407

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 55,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito

Imagen de archivo

Stabile, Riccardo
Publicado por Grin Verlag, 2024
ISBN 10: 3389015655 ISBN 13: 9783389015650
Nuevo paperback

Librería: dsmbooks, Liverpool, Reino Unido

Calificación del vendedor: 4 de 5 estrellas Valoración 4 estrellas, Más información sobre las valoraciones de los vendedores

paperback. Condición: New. New. book. Nº de ref. del artículo: D8S0-3-M-3389015655-6

Contactar al vendedor

Comprar nuevo

EUR 153,78
Convertir moneda
Gastos de envío: EUR 31,11
De Reino Unido a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito