Artículos relacionados a Leveraging Space-Filling Curves and the DIRECT Algorithm....

Leveraging Space-Filling Curves and the DIRECT Algorithm. A Novel Approach to Derivative-Free Multi-Dimensional Global Optimization - Tapa blanda

 
9783346913760: Leveraging Space-Filling Curves and the DIRECT Algorithm. A Novel Approach to Derivative-Free Multi-Dimensional Global Optimization

Sinopsis

Bachelor Thesis from the year 2018 in the subject Mathematics - Applied Mathematics, Nanyang Technological University, language: English, abstract: This study aims to focus on a new approach to the Dividing Rectangles or DIRECT algorithm, which is used to solve multi-dimensional global optimization problems. It also delves into the resolution of DIRECT's combinatorial complexity in higher dimensions by transforming the problem domain into its one-dimensional equivalent. Many real-world problems involve multivariate global optimization which can be difficult to solve. In this report, a new approach to the Dividing Rectangles or DIRECT algorithm for solving multi-dimensional global optimization problems with bounds and a real-valued objective function, is discussed. DIRECT is a variation of the standard Lipschitzian optimization omitting the requirement of having to specify a Lipschitz constant; by viewing the Lipschitzian constant as a weighting parameter for indicating the emphasis to be placed on global versus local search. Typically, this constant is not so small in standard Lipschitz approaches, since the constant needs be at least as large as the maximum rate of change of the objective function; which forces a higher emphasis on global search and thus, results in a slower convergence. However, DIRECT enables operation at both global and local level by concurrently searching using all possible constants. The global part of the algorithm figures out the basin of convergence of the optimum, which the local part of the algorithm can suitably exploit. This justifies the fast convergence of DIRECT in computing the approximate minimum with the guaranteed precision. One major drawback of DIRECT is its combinatorial complexity in higher dimensions where DIRECT often takes many more function evaluations to find a good approximation of the global minimum. One method to resolve this difficulty is to transform the problem domain into its one-dimensional equivalent. This ap

"Sinopsis" puede pertenecer a otra edición de este libro.

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Leveraging Space-Filling Curves and the DIRECT Algorithm....

Imagen del vendedor

Aditi Dutta
Publicado por GRIN Verlag Jul 2023, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Bachelor Thesis from the year 2018 in the subject Mathematics - Applied Mathematics, Nanyang Technological University, language: English, abstract: This study aims to focus on a new approach to the Dividing Rectangles or DIRECT algorithm, which is used to solve multi-dimensional global optimization problems. It also delves into the resolution of DIRECT's combinatorial complexity in higher dimensions by transforming the problem domain into its one-dimensional equivalent.Many real-world problems involve multivariate global optimization which can be difficult to solve. In this report, a new approach to the Dividing Rectangles or DIRECT algorithm for solving multi-dimensional global optimization problems with bounds and a real-valued objective function, is discussed. DIRECT is a variation of the standard Lipschitzian optimization omitting the requirement of having to specify a Lipschitz constant; by viewing the Lipschitzian constant as a weighting parameter for indicating the emphasis to be placed on global versus local search. Typically, this constant is not so small in standard Lipschitz approaches, since the constant needs be at least as large as the maximum rate of change of the objective function; which forces a higher emphasis on global search and thus, results in a slower convergence. However, DIRECT enables operation at both global and local level by concurrently searching using all possible constants. The global part of the algorithm figures out the basin of convergence of the optimum, which the local part of the algorithm can suitably exploit. This justifies the fast convergence of DIRECT in computing the approximate minimum with the guaranteed precision. One major drawback of DIRECT is its combinatorial complexity in higher dimensions where DIRECT often takes many more function evaluations to find a good approximation of the global minimum. One method to resolve this difficulty is to transform the problem domain into its one-dimensional equivalent. This approach is demonstrated in this report using space filling curves, to reduce the multiextremal optimization problem to the minimization of a univariate function. In this case, the Hölder continuity of space filling curves has been exploited to solve global optimization problems. 48 pp. Englisch. Nº de ref. del artículo: 9783346913760

Contactar al vendedor

Comprar nuevo

EUR 27,95
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Aditi Dutta
Publicado por GRIN Verlag, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Bachelor Thesis from the year 2018 in the subject Mathematics - Applied Mathematics, Nanyang Technological University, language: English, abstract: This study aims to focus on a new approach to the Dividing Rectangles or DIRECT algorithm, which is used to solve multi-dimensional global optimization problems. It also delves into the resolution of DIRECT's combinatorial complexity in higher dimensions by transforming the problem domain into its one-dimensional equivalent.Many real-world problems involve multivariate global optimization which can be difficult to solve. In this report, a new approach to the Dividing Rectangles or DIRECT algorithm for solving multi-dimensional global optimization problems with bounds and a real-valued objective function, is discussed. DIRECT is a variation of the standard Lipschitzian optimization omitting the requirement of having to specify a Lipschitz constant; by viewing the Lipschitzian constant as a weighting parameter for indicating the emphasis to be placed on global versus local search. Typically, this constant is not so small in standard Lipschitz approaches, since the constant needs be at least as large as the maximum rate of change of the objective function; which forces a higher emphasis on global search and thus, results in a slower convergence. However, DIRECT enables operation at both global and local level by concurrently searching using all possible constants. The global part of the algorithm figures out the basin of convergence of the optimum, which the local part of the algorithm can suitably exploit. This justifies the fast convergence of DIRECT in computing the approximate minimum with the guaranteed precision. One major drawback of DIRECT is its combinatorial complexity in higher dimensions where DIRECT often takes many more function evaluations to find a good approximation of the global minimum. One method to resolve this difficulty is to transform the problem domain into its one-dimensional equivalent. This approach is demonstrated in this report using space filling curves, to reduce the multiextremal optimization problem to the minimization of a univariate function. In this case, the Hölder continuity of space filling curves has been exploited to solve global optimization problems. Nº de ref. del artículo: 9783346913760

Contactar al vendedor

Comprar nuevo

EUR 27,95
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen de archivo

Dutta, Aditi
Publicado por Grin Verlag, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783346913760

Contactar al vendedor

Comprar nuevo

EUR 42,18
Convertir moneda
Gastos de envío: EUR 6,83
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen de archivo

Dutta, Aditi
Publicado por Grin Verlag, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Tapa blanda

Librería: Best Price, Torrance, CA, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. SUPER FAST SHIPPING. Nº de ref. del artículo: 9783346913760

Contactar al vendedor

Comprar nuevo

EUR 33,76
Convertir moneda
Gastos de envío: EUR 25,58
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Aditi Dutta
Publicado por GRIN Verlag, GRIN Verlag Jul 2023, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Bachelor Thesis from the year 2018 in the subject Mathematics - Applied Mathematics, Nanyang Technological University, language: English, abstract: This study aims to focus on a new approach to the Dividing Rectangles or DIRECT algorithm, which is used to solve multi-dimensional global optimization problems. It also delves into the resolution of DIRECT's combinatorial complexity in higher dimensions by transforming the problem domain into its one-dimensional equivalent.Many real-world problems involve multivariate global optimization which can be difficult to solve. In this report, a new approach to the Dividing Rectangles or DIRECT algorithm for solving multi-dimensional global optimization problems with bounds and a real-valued objective function, is discussed. DIRECT is a variation of the standard Lipschitzian optimization omitting the requirement of having to specify a Lipschitz constant; by viewing the Lipschitzian constant as a weighting parameter for indicating the emphasis to be placed on global versus local search. Typically, this constant is not so small in standard Lipschitz approaches, since the constant needs be at least as large as the maximum rate of change of the objective function; which forces a higher emphasis on global search and thus, results in a slower convergence. However, DIRECT enables operation at both global and local level by concurrently searching using all possible constants. The global part of the algorithm figures out the basin of convergence of the optimum, which the local part of the algorithm can suitably exploit. This justifies the fast convergence of DIRECT in computing the approximate minimum with the guaranteed precision. One major drawback of DIRECT is its combinatorial complexity in higher dimensions where DIRECT often takes many more function evaluations to find a good approximation of the global minimum. One method to resolve this difficulty is to transform the problem domain into its one-dimensional equivalent. This approach is demonstrated in this report using space filling curves, to reduce the multiextremal optimization problem to the minimization of a univariate function. In this case, the Hölder continuity of space filling curves has been exploited to solve global optimization problems. 48 pp. Englisch. Nº de ref. del artículo: 9783346913760

Contactar al vendedor

Comprar nuevo

EUR 27,95
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Aditi Dutta
Publicado por GRIN Verlag, 2023
ISBN 10: 3346913767 ISBN 13: 9783346913760
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Leveraging Space-Filling Curves and the DIRECT Algorithm. A Novel Approach to Derivative-Free Multi-Dimensional Global Optimization | Aditi Dutta | Taschenbuch | Englisch | 2023 | GRIN Verlag | EAN 9783346913760 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Nº de ref. del artículo: 127360223

Contactar al vendedor

Comprar nuevo

EUR 27,95
Convertir moneda
Gastos de envío: EUR 55,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito