Artículos relacionados a Development of New Hybrid Models for Prediction of...

Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms - Tapa blanda

 
9783346551078: Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms

Sinopsis

Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R's) and root mean squared errors (RMSE's). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.

"Sinopsis" puede pertenecer a otra edición de este libro.

  • EditorialGRIN Verlag
  • Año de publicación2022
  • ISBN 10 3346551075
  • ISBN 13 9783346551078
  • EncuadernaciónTapa blanda
  • IdiomaInglés
  • Número de edición1
  • Número de páginas150
  • Contacto del fabricanteno disponible

Comprar nuevo

Ver este artículo

EUR 11,00 gastos de envío desde Alemania a España

Destinos, gastos y plazos de envío

Resultados de la búsqueda para Development of New Hybrid Models for Prediction of...

Imagen del vendedor

Fatih Abut
Publicado por GRIN Verlag Jan 2022, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
Nuevo Taschenbuch
Impresión bajo demanda

Librería: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. 148 pp. Englisch. Nº de ref. del artículo: 9783346551078

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 11,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen del vendedor

Fatih Abut
Publicado por GRIN Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
Nuevo Taschenbuch

Librería: AHA-BUCH GmbH, Einbeck, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Druck auf Anfrage Neuware - Printed after ordering - Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average. Nº de ref. del artículo: 9783346551078

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 11,99
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 1 disponibles

Añadir al carrito

Imagen del vendedor

Fatih Abut
Publicado por GRIN Verlag Jan 2022, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
Nuevo Taschenbuch

Librería: buchversandmimpf2000, Emtmannsberg, BAYE, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Neuware -Doctoral Thesis / Dissertation from the year 2017 in the subject Engineering - Computer Engineering, grade: 100.00/100.00, Çukurova University, language: English, abstract: The purpose of this thesis is twofold. The first purpose is to develop new hybrid feature selection-based maximal oxygen uptake (VO2max) prediction models using for the first time the double and triple combinations of maximal, submaximal and questionnaire variables. Several machine learning methods including Support Vector Machine, artificial neural network-based and tree-structured methods combined individually with three feature selectors Relief-F, minimum redundancy maximum relevance (mRMR) and maximum-likelihood feature selector (MLFS) have been applied for model development. The second purpose is to design a new ensemble feature selector, which aggregates the consensus properties of Relief-F, mRMR and MLFS to produce more robust decisions about the set of relevantly identified VO2max predictors and to create more accurate prediction models. Using 10-fold cross validation on three different datasets, the performance of prediction models has been evaluated by calculating their multiple correlation coefficients (R¿s) and root mean squared errors (RMSE¿s). The results show that compared with the results of the other regular feature selection-based models in literature, the reported values of R and RMSE of the hybrid models in this thesis are considerably more accurate. Furthermore, prediction models based on the proposed ensemble feature selector outperform the models created by individually using the Relief-F, mRMR or MLFS, achieving similar or ideally up to 12.46% lower error rates on the average.Books on Demand GmbH, Überseering 33, 22297 Hamburg 148 pp. Englisch. Nº de ref. del artículo: 9783346551078

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 35,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 2 disponibles

Añadir al carrito

Imagen de archivo

Abut, Fatih
Publicado por Grin Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
Nuevo Tapa blanda

Librería: California Books, Miami, FL, Estados Unidos de America

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Condición: New. Nº de ref. del artículo: I-9783346551078

Contactar al vendedor

Comprar nuevo

EUR 84,00
Convertir moneda
Gastos de envío: EUR 6,94
De Estados Unidos de America a España
Destinos, gastos y plazos de envío

Cantidad disponible: Más de 20 disponibles

Añadir al carrito

Imagen del vendedor

Fatih Abut
Publicado por GRIN Verlag, 2022
ISBN 10: 3346551075 ISBN 13: 9783346551078
Nuevo Taschenbuch

Librería: preigu, Osnabrück, Alemania

Calificación del vendedor: 5 de 5 estrellas Valoración 5 estrellas, Más información sobre las valoraciones de los vendedores

Taschenbuch. Condición: Neu. Development of New Hybrid Models for Prediction of Maximal Oxygen Uptake (VO2max) Using Machine Learning Methods Combined with Feature Selection Algorithms | Fatih Abut | Taschenbuch | Englisch | 2022 | GRIN Verlag | EAN 9783346551078 | Verantwortliche Person für die EU: preigu, Ansas Meyer, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Nº de ref. del artículo: 120999217

Contactar al vendedor

Comprar nuevo

EUR 47,95
Convertir moneda
Gastos de envío: EUR 55,00
De Alemania a España
Destinos, gastos y plazos de envío

Cantidad disponible: 5 disponibles

Añadir al carrito